972 resultados para Gas sensing device


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica based nanostructured composite materials doped with luminol and cobalt(II) ion were synthesized and characterized, resulting in a highly chemiluminescent material in the presence of hydrogen peroxide. A detection system with the CL light guided from the reaction tube to the photomultiplier tube using a one millimeter glass optical fiber was developed and assessed. A linear response was observed using a semi-logarithm calibration between 50–2000 µM hydrogen peroxide with 1 µM as the limit of detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto robots and was used to control and detect loss of for traction. %and to detect the ball in the kicking device. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms to inter alia enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a huge overhead of device transition. The technology enhancement has allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring the system schedulability. Our results show an energy gain of up to 90% in the best case when compared to the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactive products are appealing objects in a technology-driven society and the offer in the market is wide and varied. Most of the existing interactive products only provide either light or sound experiences. Therefore, the goal of this project was to develop a product aimed for children combining both features. This project was developed by a team of four thirdyear students with different engineering backgrounds and nationalities during the European Project Semester at ISEP (EPS@ISEP) in 2012. This paper presents the process that led to the development of an interactive sound table that combines nine identical interaction blocks, a control block and a sound block. Each interaction block works independently and is composed of four light emitting diodes (LED) and one infrared (IR) sensor. The control is performed by an Arduino microcontroller and the sound block includes a music shield and a pair of loud speakers. A number of tests were carried out to assess whether the controller, IR sensors, LED, music shield and speakers work together properly and if the ensemble was a viable interactive light and sound device for children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represent significant diagnostic challenges. SPECT/CT Image fusion can provide missing anatomical and bone structure information to functional imaging, which is particularly useful to increase diagnosis certainty of bone pathology. However, due to SPECT acquisition duration, patient’s involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We aimed at designing an ankle and foot immobilizing device and measuring its efficacy at improving image fusion. Methods: We enrolled 20 patients undergoing distal lower-limb SPECT/CT of the ankle and the foot with and without a foot holder. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomical landmarks also visible on bone scintigraphy. Analysis of variance was performed for statistical analysis. Results: The obtained absolute average difference without and with support was 5.1±5.2 mm (mean±SD) and 3.1±2.7 mm, respectively, which is significant (p<0.001). Conclusion: The introduction of the foot holder significantly decreases misalignment between SPECT and CT images, which may have clinical influence in the precise localization of foot and ankle pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the viability of an integrated wavelength optical filter and photodetector for visible light communication (VLC) is discussed. The proposed application uses indoor warm light lamps lighting accomplished by ultra-bright light-emitting diodes (LEDs) pulsed at frequencies higher than the ones perceived by the human eye. The system was analyzed at two different wavelengths in the visible spectrum (430 nm and 626 nm) with variable optical intensities. The signals were transmitted into free space and measured using a multilayered photodetector based on a-SiC:H/a-Si:H. The detector works as an optical filter with controlled wavelength sensitivity through the use of optical bias. The output photocurrent was measured for different optical intensities of the transmitted optical signal and the extent of each signal was tested. The influence of environmental fluorescent lighting was also analysed in order to test the strength of the system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote engineering (also known as online engineering) may be defined as a combination of control engineering and telematics. In this area, specific activities require computacional skills in order to develop projects where electrical devives are monitored and / or controlled, in an intercative way, through a distributed network (e.g. Intranet or Internet). In our specific case, we will be dealing with an industrial plant. Within the last few years, there has been an increase in the number of activities related to remote engineering, which may be connected to the phenomenon of the large extension experienced by the Internet (e.g. bandwith, number of users, development tools, etc.). This increase opens new and future possibilities to the implementation of advance teleworking (or e-working) positions. In this paper we present the architecture for a remote application, accessible through the Internet, able to monitor and control a roller hearth kiln, used in a ceramics industry for firing materials. The proposed architecture is based on a micro web server, whose main function is to monitor and control the firing process, by reading the data from a series of temperature sensors and by controlling a series of electronic valves and servo motors. This solution is also intended to be a low-cost alternative to other potential solutions. The temperature readings are obtained through K-type thermopairs and the gas flow is controlled through electrovalves. As the firing process should not be stopped before its complete end, the system is equipped with a safety device for that specific purpose. For better understanding the system to be automated and its operation we decided to develop a scale model (100:1) and experiment on it the devised solution, based on a Micro Web Server.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pine forests constitute some of the most important renewable resources supplying timber, paper and chemical industries, among other functions. Characterization of the volatiles emitted by different Pinus species has proven to be an important tool to decode the process of host tree selection by herbivore insects, some of which cause serious economic damage to pines. Variations in the relative composition of the bouquet of semiochemicals are responsible for the outcome of different biological processes, such as mate finding, egg-laying site recognition and host selection. The volatiles present in phloem samples of four pine species, P. halepensis, P. sylvestris, P. pinaster and P. pinea, were identified and characterized with the aim of finding possible host-plant attractants for native pests, such as the bark beetle Tomicus piniperda. The volatile compounds emitted by phloem samples of pines were extracted by headspace solid-phase micro extraction, using a 2 cm 50/30 mm divinylbenzene/carboxen/polydimethylsiloxane table flex solid-phase microextraction fiber and its contents analyzed by high-resolution gas chromatography, using flame ionization and a non polar and chiral column phases. The components of the volatile fraction emitted by the phloem samples were identified by mass spectrometry using time-of-flight and quadrupole mass analyzers. The estimated relative composition was used to perform a discriminant analysis among pine species, by means of cluster and principal component analysis. It can be concluded that it is possible to discriminate pine species based on the monoterpenes emissions of phloem samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro