990 resultados para Galaxies : Photometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival Hubble Space Telescope (HST) + Advanced Camera for Survey images. We find a source coincident with the supernova (SN) in the F814W filter within the total 75 mas (~3 pc astrometric uncertainty; however, the position of the progenitor candidate in contemporaneous F435W and F555W filters is significantly offset. We conclude that the 'progenitor candidate' is in fact two physically unrelated sources; a blue source which is likely unrelated to the SN, and a red source which we suggest exploded as SN 2013ej. Deep images with the same instrument on board HST taken when the SN has faded (in approximately two year's time) will allow us to accurately characterize the unrelated neighbouring source and hence determine the intrinsic flux of the progenitor in three filters.We suggest that the F814W flux is dominated by the progenitor of SN 2013ej, and assuming a bolometric correction appropriate to an M-type supergiant, we estimate that the mass of the progenitor of SN 2013ej was between 8 and 15.5M⊙. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Super-luminous supernovae that radiate more than 10 44 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56 Ni are synthesized; this isotope decays to 56 Fe via 56 Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10 -6 times that of the core-collapse rate. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a Type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate-luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D = 21.6 ± 1.1 Mpc. The produced nickel-mass is estimated to be ∼0.020 ± 0.004 M⊙. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values of the total energy as ∼0.48 × 1051 erg, the ejected mass as ∼11.5 M⊙, and the initial radius as ∼287 R⊙.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass-loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the European Southern Observatory Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (∼20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to redshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption and SNe Ia displaying blueshifted narrow Na I D absorption features have broader light curves. The strength of the Na I D absorption is stronger in SNe Ia displaying blueshifted Na I D absorption features than those without blueshifted features, and the strength of the blueshifted Na I D is correlated with the B − V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests that there are at least two distinct populations of normal, cosmologically useful SNe Ia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods. Aims: To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature. Methods: We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8-24 μm thermal-IR flux measurements from the literature. Results: A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78°(±10°), β = + 58°(±10°). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction. Conclusions: The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet 9P/Tempel 1, rather than the highly elongated or "bi-lobed" nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: We investigated the physical properties and dynamical evolution of near-Earth asteroid (NEA) (190491) 2000 FJ10 in order to assess the suitability of this accessible NEA as a space mission target. Methods: Photometry and colour determination were carried out with the 1.54 m Kuiper Telescope (Mt Bigelow, USA) and the 10 m Southern African Large Telescope (SALT; Sutherland, South Africa) during the object's recent favourable apparition in 2011-12. During the earlier 2008 apparition, a spectrum of the object in the 6000-9000 Angstrom region was obtained with the 4.2 m William Herschel Telescope (WHT; Canary Islands, Spain). Interpretation of the observational results was aided by numerical simulations of 1000 dynamical clones of 2000 FJ10 up to 106 yr in the past and in the future. Results: The asteroid's spectrum and colours determined by our observations suggest a taxonomic classification within the S-complex although other classifications (V, D, E, M, P) cannot be ruled out. On this evidence, it is unlikely to be a primitive, relatively unaltered remnant from the early history of the solar system and thus a low priority target for robotic sample return. Our photometry placed a lower bound of 2 h to the asteroid's rotation period. Its absolute magnitude was estimated to be 21.54 ± 0.1 which, for a typical S-complex albedo, translates into a diameter of 130 ± 20 m. Our dynamical simulations show that it has likely been an Amor for the past 105 yr. Although currently not Earth-crossing, it will likely become so during the period 50-100 kyr in the future. It may have arrived from the inner or central main belt >1 Myr ago as a former member of a low-inclination S-class asteroid family. Its relatively slow rotation and large size make it a suitable destination for a human mission. We show that ballistic Earth-190491-Earth transfer trajectories with ΔV <2 km s-1 at the asteroid exist between 2052 and 2061. Based on observations made with the Southern African Large Telescope (SALT).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.

Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.

Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.

Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are conducting an ESO Large Program that includes optical photometry, thermal-IR observations, and optical-NIR spectroscopy of selected NEAs. Among the principal goals of the program are shape and spin-state modeling, and searching for YORP-induced changes in rotation periods. One of our targets is asteroid (1917) Cuyo, a near-Earth asteroid from the Amor group. We carried out an extensive observing campaign on Cuyo between April 2010 and April 2013, operating primarily at the ESO 3.6m NTT for optical photometry, and the 8.2m VLT at Paranal for thermal-IR imaging. Further optical observations were acquired at the ESO 2.2m telescope, the Palomar 200" Hale telescope (California), JPL’s Table Mountain Observatory (California) and the Faulkes Telescope South (Australia). We obtained optical imaging data for rotational lightcurves throughout this period, as the asteroid passed through a wide range of observational geometries, conducive to producing a good shape model and spin state solution. The preliminary shape and spin state model indicates a nearly spherical shape and a rotation pole at ecliptic longitude λ = 53° ± 20° and latitude β = -37° ± 10° (1-sigma error bars are approximate). The sidereal rotation period was measured to be 2.6899522 ± (3 × 10^-7) hours. Linkage with earlier lightcurve data shows possible evidence of a small change in rotation rate during the period 1989-2013. We applied the NEATM thermal model (Harris A., Icarus 131, 291, 1998) to our VLT thermal-IR measurements (8-19.6 μm), obtained in September and December 2011. The derived effective diameter ranges from 3.4 to 4.2 km, and the geometric albedo is 0.16 (+0.07, -0.04). Using the shape model and thermal fluxes we will perform a detailed thermophysical analysis using the new Advanced Thermophysical Model (Rozitis, B. & Green, S.F., MNRAS 415, 2042, 2011; Rozitis, B. & Green, S.F., MNRAS 423, 367, 2012). This work was performed in part at the Jet Propulsion Laboratory under a contract with NASA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a pilot study of a novel observing technique, defocussed transmission spectroscopy, and its application to the study of exoplanet atmospheres using ground-based platforms. Similar to defocussed photometry, defocussed transmission spectroscopy has an added advantage over normal spectroscopy in that it reduces systematic errors due to flat-fielding, PSF variations, slit-jaw imperfections and other effects associated with ground-based observations. For one of the planetary systems studied, WASP-12b, we report a tentative detection of additional Na absorption of 0.12+/-0.03[+0.03]% during transit using a 2A wavelength mask. After consideration of a systematic that occurs mid-transit, it is likely that the true depth is actually closer to 0.15%. This is a similar level of absorption reported in the atmosphere of HD209458b (0.135+/-0.017%, Snellen et al. 2008). Finally, we outline methods that will improve the technique during future observations, based on our findings from this pilot study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme.We found that five post-AGB stars showed a broad feature with a peak at 7.7 μm, that had not been classified before. Further, the 10-13 μm PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 μm rather than two distinct sharp peaks at 11.3 and 12.7 μm, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to planetary nebulae, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 +/- 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H]= -0.16 +/- 0.08 and has a radius R-star = 0.716 +/- 0.024 R-circle dot and mass M-star = 0.775 +/- 0.027M(circle dot). The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R-p = 2.53 +/- 0.18 R-circle plus. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 +/- 1.33 M-circle plus planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of Type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circumstellar material (CSM). The spectra show a blue continuum at early phases and prominent Balmer lines in emission; however, the absolute magnitude at the discovery of SN 2007sv (M-R=-14.25 +/- 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition, we find no unequivocal evidence of broad lines of alpha- and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including Type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cao et al. reported a possible progenitor detection for the Type Ib supernovae iPTF13bvn for the first time. We find that the progenitor is in fact brighter than the magnitudes previously reported by approximately 0.7-0.2 mag with a larger error in the bluer filters. We compare our new magnitudes to our large set of binary evolution models and find that many binary models with initial masses in the range of 10-20M(circle dot) match this new photometry and other constraints suggested from analysing the supernova. In addition, these lower mass stars retain more helium at the end of the model evolution indicating that they are likely to be observed as Type Ib supernovae rather than their more massive, Wolf-Rayet counter parts. We are able to rule out typical Wolf-Rayet models as the progenitor because their ejecta masses are too high and they do not fit the observed SED unless they have a massive companion which is the observed source at the supernova location. Therefore only late-time observations of the location will truly confirm if the progenitor was a helium giant and not a Wolf-Rayet star.