457 resultados para GLUCOCORTICOID


Relevância:

10.00% 10.00%

Publicador:

Resumo:

11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To determine the success of medical management of presumptive cervical disk herniation in dogs and variables associated with treatment outcome. DESIGN Retrospective case series. ANIMALS Dogs (n=88) with presumptive cervical disk herniation. METHODS Dogs with presumptive cervical and thoracolumbar disk herniation were identified from medical records at 2 clinics and clients were mailed a questionnaire related to the success of therapy, clinical recurrence of signs, and quality of life (QOL) as interpreted by the owner. Signalment, duration and degree of neurologic dysfunction, and medication administration were determined from medical records. RESULTS Ninety-seven percent of dogs (84/87) with complete information were described as ambulatory at initial evaluation. Successful treatment was reported for 48.9% of dogs with 33% having recurrence of clinical signs and 18.1% having therapeutic failure. Bivariable logistic regression showed that non-steroidal anti-inflammatory drug (NSAID) administration was associated with success (P=.035; odds ratio [OR]=2.52). Duration of cage rest and glucocorticoid administration were not significantly associated with success or QOL. Dogs with less-severe neurologic dysfunction were more likely to have a successful outcome (OR=2.56), but this association was not significant (P=.051). CONCLUSIONS Medical management can lead to an acceptable outcome in many dogs with presumptive cervical disk herniation. Based on these data, NSAIDs should be considered as part of the therapeutic regimen. Cage rest duration and glucocorticoid administration do not appear to benefit these dogs, but this should be interpreted cautiously because of the retrospective data collection and use of client self-administered questionnaire follow-up. CLINICAL RELEVANCE These results provide insight into the success of medical management for presumptive cervical disk herniation in dogs and may allow for refinement of treatment protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To determine the success of medical management of presumptive thoracolumbar disk herniation in dogs and the variables associated with treatment outcome. STUDY DESIGN Retrospective case series. ANIMALS Dogs (n=223) with presumptive thoracolumbar disk herniation. METHODS Medical records from 2 clinics were used to identify affected dogs, and owners were mailed a questionnaire about success of therapy, recurrence of clinical signs, and quality of life (QOL) as interpreted by the owner. Signalment, duration and degree of neurologic dysfunction, and medication administration were determined from medical records. RESULTS Eighty-three percent of dogs (185/223) were ambulatory at initial evaluation. Successful treatment was reported for 54.7% of dogs, with 30.9% having recurrence of clinical signs and 14.4% classified as therapeutic failures. From bivariable logistic regression, glucocorticoid administration was negatively associated with success (P=.008; odds ratio [OR]=.48) and QOL scores (P=.004; OR=.48). The duration of cage rest was not significantly associated with success or QOL. Nonambulatory dogs were more likely to have lower QOL scores (P=.01; OR=2.34). CONCLUSIONS Medical management can lead to an acceptable outcome in many dogs with presumptive thoracolumbar disk herniation. Cage rest duration does not seem to affect outcome and glucocorticoids may negatively impact success and QOL. The conclusions in this report should be interpreted cautiously because of the retrospective data collection and the use of client self-administered questionnaire follow-up. CLINICAL RELEVANCE These results provide an insight into the success of medical management for presumptive thoracolumbar disk herniation in dogs and may allow for refinement of treatment protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Giant cell arteritis is an immune-mediated disease of medium and large-sized arteries that affects mostly people older than 50 years of age. Treatment with glucocorticoids is the gold-standard and prevents severe vascular complications but is associated with substantial morbidity and mortality. Tocilizumab, a humanised monoclonal antibody against the interleukin-6 receptor, has been associated with rapid induction and maintenance of remission in patients with giant cell arteritis. We therefore aimed to study the efficacy and safety of tocilizumab in the first randomised clinical trial in patients with newly diagnosed or recurrent giant cell arteritis. METHODS In this single centre, phase 2, randomised, double-blind, placebo-controlled trial, we recruited patients aged 50 years and older from University Hospital Bern, Switzerland, who met the 1990 American College of Rheumatology criteria for giant cell arteritis. Patients with new-onset or relapsing disease were randomly assigned (2:1) to receive either tocilizumab (8 mg/kg) or placebo intravenously. 13 infusions were given in 4 week intervals until week 52. Both groups received oral prednisolone, starting at 1 mg/kg per day and tapered down to 0 mg according to a standard reduction scheme defined in the study protocol. Allocation to treatment groups was done using a central computerised randomisation procedure with a permuted block design and a block size of three, and concealed using central randomisation generated by the clinical trials unit. Patients, investigators, and study personnel were masked to treatment assignment. The primary outcome was the proportion of patients who achieved complete remission of disease at a prednisolone dose of 0·1 mg/kg per day at week 12. All analyses were intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01450137. RESULTS Between March 3, 2012, and Sept 9, 2014, 20 patients were randomly assigned to receive tocilizumab and prednisolone, and ten patients to receive placebo and glucocorticoid; 16 (80%) and seven (70%) patients, respectively, had new-onset giant cell arteritis. 17 (85%) of 20 patients given tocilizumab and four (40%) of ten patients given placebo reached complete remission by week 12 (risk difference 45%, 95% CI 11-79; p=0·0301). Relapse-free survival was achieved in 17 (85%) patients in the tocilizumab group and two (20%) in the placebo group by week 52 (risk difference 65%, 95% CI 36-94; p=0·0010). The mean survival-time difference to stop glucocorticoids was 12 weeks in favour of tocilizumab (95% CI 7-17; p<0·0001), leading to a cumulative prednisolone dose of 43 mg/kg in the tocilizumab group versus 110 mg/kg in the placebo group (p=0·0005) after 52 weeks. Seven (35%) patients in the tocilizumab group and five (50%) in the placebo group had serious adverse events. INTERPRETATION Our findings show, for the first time in a trial setting, the efficacy of tocilizumab in the induction and maintenance of remission in patients with giant cell arteritis. FUNDING Roche and the University of Bern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells govern their activities and modulate their interactions with the environment to achieve homeostasis. The heat shock response (HSR) is one of the most well studied fundamental cellular responses to environmental and physiological challenges, resulting in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular constituents from the deleterious effects of stress. In addition to its role in cytoprotection, the HSR also influences lifespan and is associated with a variety of human diseases including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is primarily mediated by the highly conserved transcription factor HSF1, which recognizes target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent years, significant efforts have been made to identify small molecules as potential pharmacological activators of HSF1 that could be used for therapeutic benefit in the treatment of human diseases relevant to protein conformation. However, the detailed mechanisms through which these molecules drive HSR activation remain unclear. In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model system to identify a group of thiol-reactive molecules including oxidants, transition metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone complex activity in a reciprocal, dose-dependent manner. To further understand whether cells sense these reactive compounds through accumulation of unfolded proteins, the proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not observed in the presence of the thiol-reactive compounds at the concentrations sufficient to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. Together with the ultracentrifugation analysis of cell lysates that detected no insoluble protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-reactive compounds do not induce the HSR via a mechanism based on accumulation of unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may influence aspects of the protein quality control system such as the ubiquitin-proteasome system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do not activate the HSR by inhibiting UPS-dependent protein degradation. I therefore hypothesized that these molecules may directly inactivate protein chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be modified in vivo by a model organic electrophile using Click chemistry technology, verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response in response to environmental or endogenously produced thiol-reactive molecules and can discriminate between two distinct environmental stressors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: Comunicar un caso de cetoacidosis inducida por corticoides y gatifloxacina y discutir los mecanismos de esta inusual y seria complicación. Caso clínico: Mujer de 32 años, ingresa por neumonía adquirida en la comunidad de 5 días de evolución. Antecedentes: AR probable diagnosticada 4 meses antes tratada con metotrexate y corticoides intermitente. Examen físico: regular estado general, IMC 21, Tº 38ºC, FR 32/min, derrame pleural derecho, FC 96/min, PA 110/70, artralgias sin artritis. Exámenes complementarios: Hto 23%, GB 16300/mm3, VSG 96mm/1ºh, glucemia 0.90mg/dl, función hepática y amilasa normales, uremia 1.19g/l, creatinina 19mg/l. Hemocultivos (2) y esputo positivos para Neumococo penicilina-sensible. La neumonía responde a gatifloxacina. Deteriora la función renal hasta la anuria con acidosis metabólica. Se interpreta como glomerulonefritis lúpica rápidamente progresiva por proteinuria de 2g/24hs, FR (+) 1/1280, FAN (+) 1/320 homogéneo, Anti ADN (+) , complemento bajo: C3 29.4mg/dl y C4 10mg/dl, Ac anti Ro, La, Scl70, RNP y anticardiolipinas positivos. Se indica metilprednisolona EV (3 bolos 1g), complicándose con hiperglucemias de >6 g/l y cetoacidosis con cetonuria (+); Ac anti ICA y antiGAD negativos con HbA1C 5.2%. Es tratada en UTI (insulina y hemodiálisis). La paciente mejora, se desciende la dosis de corticoides, con normalización de la glucemia sin tratamiento hipoglucemiante. Comentarios 1) La presencia de HbA1C nomal, Ac anti ICA y GAD negativos permite descartar con razonable grado de certeza una diabetes tipo1 asociada al lupus. 2) El desarrollo de la cetoacidosis durante el tratamiento con corticoides y gatifloxacina y su resolución posterior avalan el rol etiológico de los mismos. 3) La cetoacidosis puede explicarse por estimulación de la gluconeogénesis y la insulinoresistencia a nivel de receptor y post-receptor generada por los fármacos potenciado por el estado inflamatorio relacionado con el lupus y la sepsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of mRNA export is a complex issue central to cellular physiology. We characterized previously yeast Gle1p, a protein with a leucine-rich (LR) nuclear export sequence (NES) that is essential for poly(A)+ RNA export in Saccharomyces cerevisiae. To characterize elements of the vertebrate mRNA export pathway, we identified a human homologue of yeast Gle1p and analyzed its function in mammalian cells. hGLE1 encodes a predicted 75-kDa polypeptide with high sequence homology to yeast Gle1p, but hGle1p does not contain a sequence motif matching any of the previously characterized NESs. hGLE1 can complement a yeast gle1 temperature-sensitive export mutant only if a LR-NES is inserted into it. To determine whether hGle1p played a role in nuclear export, anti-hGle1p antibodies were microinjected into HeLa cells. In situ hybridization of injected cells showed that poly(A)+ RNA export was inhibited. In contrast, there was no effect on the nuclear import of a glucocorticoid receptor reporter. We conclude that hGle1p functions in poly(A)+ RNA export, and that human cells facilitate such export with a factor similar to yeast but without a recognizable LR-NES. With hGle1p localized at the nuclear pore complexes, hGle1p is positioned to act at a terminal step in the export of mature RNA messages to the cytoplasm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small ligand–receptor interactions underlie many fundamental processes in biology and form the basis for pharmacological intervention of human diseases in medicine. We report herein a genetic system, named the yeast three-hybrid system, for detecting ligand–receptor interactions in vivo. This system is adapted from the yeast two-hybrid system with which a third synthetic hybrid ligand is combined. The feasibility of this system was demonstrated using as the hybrid ligand a heterodimer of covalently linked dexamethasone and FK506. Yeast expressing fusion proteins of the hormone binding domain of the rat glucocorticoid receptor fused to the LexA DNA-binding domain and of FKBP12 fused to a transcriptional activation domain activated reporter genes when plated on medium containing the dexamethasone–FK506 heterodimer. The reporter gene activation is completely abrogated in a competitive manner by the presence of excess FK506. Using this system, we screened a Jurkat cDNA library fused to the transcriptional activation domain in yeast expressing the hormone binding domain of rat glucocorticoid receptor–LexA DNA binding domain fusion protein in the presence of dexamethasone–FK506 heterodimer. We isolated overlapping clones of human FKBP12. These results demonstrate that the three-hybrid system can be used to discover receptors for small ligands and to screen for new ligands to known receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages become activated by bacterial endotoxin (lipopolysaccharide) and other stimuli to release proinflammatory cytokines and NO. To prevent release of toxic or potentially lethal quantities of these factors, the state of macrophage activation is counter-regulated by anti-inflammatory mediators (e.g., glucocorticoid hormones, interleukin 10, and transforming growth factor type β). Fetuin, a negative acute-phase protein, recently was implicated as an anti-inflammatory mediator, because it is required for macrophage deactivation by spermine. In the present studies, we found that fetuin is necessary for macrophages to respond to CNI-1493, a tetravalent guanylhydrazone inhibitor of p38 mitogen-activated protein kinase phosphorylation. Fetuin dose-dependently increases macrophage uptake of CNI-1493, which can be specifically inhibited by anti-human fetuin antibodies. Anti-human fetuin antibodies render primary human peripheral blood mononuclear cells insensitive to deactivation by CNI-1493. Thus, macrophages use fetuin as an opsonin for cationic-deactivating molecules, both endogenous (e.g., spermine) and pharmacologic (e.g., CNI-1493). This role of fetuin as an opsonic participant in macrophage-deactivating mechanisms has implications for understanding and manipulating the innate immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we investigated, using intravital microscopy, how neutrophil extravasation across mouse mesenteric postcapillary venules is inhibited by the glucocorticoid-regulated protein lipocortin (LC; also termed annexin) 1. Intraperitoneal injection of 1 mg of zymosan into mice induced neutrophil rolling on the activated mesenteric endothelium followed by adhesion (maximal at 2 hr: 5–6 cells per 100-μm of vessel length) and emigration (maximal at 4 hr: 8–10 cells per high-powered field). Treatment of mice with human recombinant LC1 (2 mg/kg s.c.) or its mimetic peptide Ac2–26 (13 mg/kg s.c.) did not modify cell rolling but markedly reduced (≥50%) the degree of neutrophil adhesion and emigration (P < 0.05). Intravenous treatment with peptide Ac2–26 (13 mg/kg) or recombinant human LC1 (0.7–2 mg/kg) promoted detachment of neutrophils adherent to the endothelium 2 hr after zymosan administration, with adherent cells detaching within 4.12 ± 0.75 min and 2.36 ± 0.31 min, respectively (n = 20–25 cells). Recruitment of newly adherent cells to the endothelium was unaffected. The structurally related protein LC5 was inactive in this assay, whereas a chimeric molecule constructed from the N terminus of LC1 (49 aa) attached to the core region of LC5 produced cell detachment with kinetics similar to LC1. Removal of adherent neutrophils from activated postcapillary endothelium is a novel pharmacological action, and it is at this site where LC1 and its mimetics operate to down-regulate this aspect of the host inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor necrosis factor-α (TNF-α) promoter was used to explore the molecular mechanisms of estradiol (E2)-dependent repression of gene transcription. E2 inhibited basal activity and abolished TNF-α activation of the TNF-α promoter. The E2-inhibitory element was mapped to the −125 to −82 region of the TNF-α promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) β is more potent than ERα at repressing the −1044 TNF-α promoter and the TNF-RE upstream of the herpes simplex virus thymidine kinase promoter, but weaker at activating transcription through an estrogen response element. The activation function-2 (AF-2) surface in the ligand-binding domain is required for repression, because anti-estrogens and AF-2 mutations impair repression. The requirement of the AF-2 surface for repression is probably due to its capacity to recruit p160 coactivators or related coregulators, because overexpressing the coactivator glucocorticoid receptor interacting protein-1 enhances repression, whereas a glucocorticoid receptor interacting protein-1 mutant unable to interact with the AF-2 surface is ineffective. Furthermore, receptor interacting protein 140 prevents repression by ERβ, probably by interacting with the AF-2 surface and blocking the binding of endogenous coactivators. These studies demonstrate that E2-mediated repression requires the AF-2 surface and the participation of coactivators or other coregulatory proteins.