918 resultados para GERM-CELL TUMORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metastasis accounts largely for the high mortality rate of colorectal cancer (CRC) patients. In this study, we performed comparative proteome analysis of primary CRC cell lines HCT-116 and its metastatic derivative E1 using 2-D DIGE. We identified 74 differentially expressed proteins, many of which function in transcription, translation, angiogenesis signal transduction, or cytoskeletal remodeling pathways, which are indispensable cellular processes involved in the metastatic cascade. Among these proteins, stathmin-1 (STMN1) was found to be highly up-regulated in E1 as compared to HCT-116 and was thus selected for further functional studies. Our results showed that perturbations in STMN1 levels resulted in significant changes in cell migration, invasion, adhesion, and colony formation. We further showed that the differential expression of STMN1 correlated with the cells' metastatic potential in other paradigms of CRC models. Using immunohistochemistry, we also showed that STMN1 was highly expressed in colorectal primary tumors and metastatic tissues as compared to the adjacent normal colorectal tissues. Furthermore, we also showed via tissue microarray analyses of 324 CRC tissues and Kaplan-Meier survival plot that CRC patients with higher expression of STMN1 have poorer prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A downstream target of the Wnt pathway, neurone glial-related cell adhesion molecule (Nr-CAM) has recently been implicated in human cancer development. However, its role in colorectal cancer (CRC) pathobiology and clinical relevance remains unknown. In this study, we examined the clinical significance of Nr-CAM protein expression in a retrospective series of 428 CRCs using immunohistochemistry and tissue microarrays. Cox proportional hazards regression was used to calculate hazard ratios (HR) of mortality according to various clinicopathological features and molecular markers. All CRC samples were immunoreactive for Nr-CAM protein expression, compared to 10 / 245 (4%) matched normal tissue (P <0.0001). Of 428 CRC samples, 97 (23%) showed Nr-CAM overexpression, which was significantly associated with nodal (P = 0.012) and distant (P = 0.039) metastasis, but not with extent of local invasion or tumor size. Additionally, Nr-CAM overexpression was associated with vascular invasion (P = 0.0029), p53 expression (P = 0.036), and peritoneal metastasis at diagnosis (P = 0.013). In a multivariate model adjusted for other clinicopathological predictors of survival, Nr-CAM overexpression correlated with a significant increase in disease-specific (HR 1.66; 95% confidence interval 1.11-2.47; P = 0.014) and overall mortality (HR 1.57; 95% confidence interval 1.07-2.30; P = 0.023) in advanced but not early stage disease. Notably, 5-fluorouracil-based chemotherapy conferred significant survival benefit to patients with tumors negative for Nr-CAM overexpression but not to those with Nr-CAM overexpressed tumors. In conclusion, Nr-CAM protein expression is upregulated in CRC tissues. Nr-CAM overexpression is an independent marker of poor prognosis among advanced CRC patients, and is a possible predictive marker for non-beneficence to 5-fluorouracil- based chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: The manipulation of tumour blood supply and thus oxygenation is a potentially important strategy for improving the treatment of solid tumours by radiation. Increased knowledge about the characteristics that distinguish the tumour vasculature from its normal counterparts may enable tumour blood flow to be more selectively modified, Nicotinamide (NA) causes relaxation of preconstricted normal and tumour-supply arteries in rats. It has also been shown to affect microregional blood flow in human tumours. Direct effects of NA on human tumour supply arteries have not previously been reported. This paper describes our evaluation of the effects of NA on two parameters: 'spontaneous', oscillatory contractile activity and agonist (phenylephrine)-induced constriction in the arteries supplying human renal cell carcinomas.

Materials and methods: Isolated renal cell carcinoma feeder vessels were perfused in an organ bath with the alpha(1)-adrenoceptor agonist phenylephrine (PE). When the arteries had reached a plateau of constriction, nicotinamide (8.2 mM) was added to the perfusate and changes in perfusion pressure were measured.

Results: PE (10 mu M) induced a sustained constriction in the majority of the renal cell carcinoma feeder vessels examined, demonstrating that they retain contractile characteristics, at least in response to this alpha(1)-adrenoceptor agonist. In combination with NA (8.2 mM) the constriction was significantly attenuated in half of the preparations. In addition, seven arteries exhibited spontaneous contractile activity which was significantly attenuated by NA in six of them.

Conclusions: NA can significantly attenuate both 'spontaneous' and agonist-induced constrictions in tumour-recruited human arteries, though not all arteries are sensitive. Published by Elsevier Science Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: We investigated tissue biomarkers in non-small cell lung cancer (NSCLC) to find indicators of brain metastasis and peritumoral brain edema.

PATIENTS AND METHODS: Fifty-two cases were studied out of which 26 had corresponding brain metastatic tissue. Clinicopathological characteristics of tumors were correlated with biomarkers of cell adhesion, cell growth, cell cycle and apoptosis regulation that were previously immunohistochemically studied but never analyzed separately according to histological subgroups, gender and smoking history.

RESULTS: Increased collagen XVII in adenocarcinoma (ADC) and increased caspase-9, CD44v6, and decreased cellular apoptosis susceptibility protein (CAS) and Ki-67 in squamous cell carcinoma (SCC) correlated significantly with brain metastasis. Increased β-catenin, E-cadherin and decreased caspase-9 expression in primary SCC, and decreased CD44v6 expression in brain metastatic SCC tissues showed a significant correlation with the extent of peritumoral brain edema. Positive correlation between smoking and biomarker expression could be observed in metastatic ADCs with p16 and caspase-8, while-negative correlation was found in SCC without brain metastasis with caspase-3, and in SCC with brain metastasis with p27.

CONCLUSION: Our results highlight the importance of separate analysis of biomarker expression in histological subtypes of NSCLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Archipelago (AGO, also known as hCdc4, Fbw7, or Sel-10) is an F-box containing component of the SCF complex implicated in the ubiquitination and proteolysis of cyclin E and c-Myc, and found to be mutated in 16% of endometrial carcinomas. We have previously reported somatic mutations in AGO in 3/10 ovarian cancer cell lines, but the frequency of such mutations in primary ovarian cancer is unknown.

Methods: The coding sequence of AGO was analyzed in 95 primary sporadic ovarian tumors and 16 cases of familial ovarian cancer, and correlated with levels of cyclin E and c-Myc protein expression. Constructs encoding mutations in AGO were transfected into an AGO-null cell line to directly test their ability to regulate cyclin E and c-Myc levels.

Results: Mutations were present in only 2 of 95 sporadic cases: a premature stop within the WD domain (471 Ter) and a missense change near the F-box (S245T). Both primary tumor specimens containing these mutations showed high levels of cyclin E and c-Myc, but reconstitution of an AGO-null cell line with constructs encoding these mutations showed 471 Ter to be inactive in regulating endogenous cyclin E and c-Myc levels, while the S245T mutant was indistinguishable from wild-type. No germ-line mutations were found in familial cases of ovarian cancer.

Conclusion: Somatic AGO mutations are infrequent in primary ovarian cancers and are unlikely to contribute to familial ovarian cancer. Reconstitution experiments, rather than measuring tumor levels of cyclin E and c-Myc, provide an effective approach to determine the functional significance of AGO mutations identified in human cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five to ten percent of individuals with melanoma have another affected family member, suggesting familial predisposition. Germ-line mutations in the cyclin-dependent kinase (CDK) inhibitor p16 have been reported in a subset of melanoma pedigrees, but their prevalence is unknown in more common cases of familial melanoma that do not involve large families with multiple affected members. We screened for germ-line mutations in p16 and in two other candidate melanoma genes, p19ARF and CDK4, in 33 consecutive patients treated for melanoma; these patients had at least one affected first or second degree relative (28 independent families). Five independent, definitive p16 mutations were detected (18%, 95% confidence interval: 6%, 37%), including one nonsense, one disease-associated missense, and three small deletions. No mutations were detected in CDK4. Disease-associated mutations in p19ARF, whose transcript is derived in part from an alternative codon reading frame of p16, were only detected in patients who also had mutations inactivating p16. We conclude that germ-line p16 mutations are present in a significant fraction of individuals who have melanoma and a positive family history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ordered, directional migration of T-lymphocytes is a key process during immune surveillance, immune response, and development. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in variety of human chemotherapy resistant cancer cell lines, indicating their potential in the treatment of both solid tumors and tumors derived from the hemopoietic system. Pyrrolobenzoxazepine 4-acetoxy-5-(1-naphtyl)naphtho[2,3-b]pyrrolo[1,2-d][1,4]-oxazepine (PBOX-15) has been shown to depolymerize tubulin in vitro and in the MCF7 breast cancer cell line. We hypothesized that this may suggest a role for this compound in modulating integrin-induced T-cell migration, which is largely dependent on the microtubule dynamics. Experiments were performed using human T lymphoma cell line Hut78 and peripheral blood T-lymphocytes isolated from healthy donors. We observed that human T-lymphocytes exposed to PBOX-15 have severely impaired ability to polarize and migrate in response to the triggering stimulus generated via cross-linking of integrin lymphocyte function associated antigen-1 receptor. Here, we show that PBOX-15 can dramatically impair microtubule network via destabilization of tubulin resulting in complete loss of the motile phenotype of T-cells. We demonstrate that PBOX-15 inhibitory mechanisms involve decreased tubulin polymerization and its post-translational modifications. Novel microtubule-targeting effects of PBOX-15 can possibly open new horizons in the treatment of overactive inflammatory conditions as well as cancer and cancer metastatic spreading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia is an inevitable feature of solid tumors and a common cause of treatment failure. Hypoxia acts as a trigger to genetic instability, apoptosis and possibly metastases. The adaptive response to cellular hypoxia involves the modulation of the synthesis of multiple proteins controlling processes such as glucose homeostasis, angiogenesis, vascular permeability and inflammation. The hypoxia responsive element (HRE) sequences isolated from oxygen-responsive genes have been shown to selectively induce gene expression in response to hypoxia when placed upstream of a promoter. The levels of induced gene expression were dependent on the number of HRE copies and the oxygen tension. Hypoxia-mediated cancer gene therapy strategies may represent a promising mean to significantly improve the efficacy of standard radiation therapy and chemotherapy approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant evidence has accumulated indicating that certain genes are induced by ionising radiation. An implication of this observation is that their promoter regions include radiation-responsive sequences. These sequences have been isolated in the promoter of several genes including Erg-1, p21/WAF-1, GADD45alpha and t-PA. The mechanism by which radiation induces gene expression remains unclear but involves putative binding sites for selected transcription factors and/or p53. Consensus CC(A/T)6GG sequences have been localized in the Erg-1 promoter and are referred to as serum response elements or CArG elements. The tandem combination of CArG elements has been shown to improve gene expression levels, with a 9-copy motif conferring maximum inducibility. The response of these genes to ionising radiation appears to follow a sigmoid relationship with time and dose. Therapeutic induction of suicide genes and significant cytotoxicity can be achieved at clinically relevant x-rays doses both in vitro and in vivo but was found to be cell-type dependent. Radiation-inducible gene therapy can be potentially enhanced by exploiting hypoxia through the inclusion of hypoxia-response element motifs in the expression cassette, the use of the anaerobic bacteria or the use of neutron irradiation. These results are encouraging and provide significant evidence that gene therapy targeted to the radiation field is a reasonably attractive therapeutic option and could help overcome hypoxic radioresistant tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype, we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G(2)/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin-8 (IL-8), a chemokine with a defining CXC amino acid motif, is known to possess tumorigenic and proangiogenic properties. Overexpression of IL-8 has been detected in many human tumors, including colorectal cancer (CRC), and is associated with poor prognosis. The goal of our study was to determine the role of IL-8 overexpression in CRC cells in vitro and in vivo. We stably transfected the IL-8 cDNA into two human colon cancer cell lines, HCT116 and Caco2, and selected IL-8-secreting transfectants. Real-time RT-PCR confirmed that IL-8 mRNA was overexpressed in IL-8 transfectants with 45- to 85-fold higher than parental cells. The IL-8-transfected clones secreted 19- to 28-fold more IL-8 protein than control and parental cells as detected by ELISA. The IL-8 transfectants demonstrated increased cellular proliferation, cell migration and invasion based on functional assays. Growth inhibition studies showed that IL-8 overexpression lead to a significant resistance to oxaliplatin (p < 0.0001). Inhibition of IL-8 overexpression with small interfering RNA reversed the observed increases in tumorigenic functions and oxaliplatin resistance, suggesting that IL-8 not only provides a proliferative advantage but also promotes the metastatic potential of colon cancer cells. Using a tumor xenograft model, IL-8-expressing cells formed significantly larger tumors than the control cells with increased microvessel density. Together, these findings indicate that overexpression of IL-8 promotes tumor growth, metastasis, chemoresistance and angiogenesis, implying IL-8 to be an important therapeutic target in CRC.