925 resultados para GASTRIC BYPASS
Resumo:
Promoter hypermethylation of CDKN2A (p16INK4A protein) is the main mechanism of gene inactivation. However, its association with Helicobacter pylori infection is a controversial issue. Therefore, we examined a series of gastric adenocarcinomas to assess the association between p16INK4A inactivation and H. pylori genotype (vacA, cagA, cagE, virB11 and flaA) according to the location and histological subtype of the tumors. p16INK4A expression and CDKN2A promoter methylation were found in 77 gastric adenocarcinoma samples by immunohistochemistry and methylation-specific PCR, respectively. Helicobacter pylori infection and genotype were determined by PCR. A strong negative correlation between immunostaining and CDKN2A promoter region methylation was found. In diffuse subtype tumors, the inactivation of p16INK4A by promoter methylation was unique in noncardia tumors (p = 0.022). In addition, H. pylori-bearing flaA was associated with non-methylation tumors (p = 0.008) and H. pylori strain bearing cagA or vacAs1m1 genes but without flaA was associated with methylated tumors (p = 0.022 and 0.003, respectively). Inactivation of p16INK4A in intestinal and diffuse subtypes showed distinct carcinogenic pathways, depending on the tumor location. Moreover, the process of methylation of the CDKN2A promoter seems to depend on the H. pylori genotype. The present data suggest that there is a differential influence and relevance of H. pylori genotype in gastric cancer development.
Resumo:
Introduction: Helicobacter pylori infection is an established risk factor for gastric cancer development, but the exact underlying mechanism still remains obscure. The inactivation of tumor suppressor genes such as p53 and p27(KIP1) is a hypothesized mechanism, although there is no consensus regarding the influence of H. pylori cagA(+) in the development of these genetic alterations. Goals: To verify the relationship among H. pylori infection, p53 mutations and p27(Kip1) Protein (p27) expression in gastric adenocarcinomas (GA) seventy-four tissues were assayed by PCR for H. pylori and cagA presence. Mutational analysis of p53 gene was performed by single-strand conformation polymorphism (SSCP). Seventy tissues were analyzed by an immunohistochemical method for p27 expression. Results: From the samples examined, 95% (70/74) were H. pylori positive, 63% cagA(+). Altered p53 electrophoretic mobility was found in 72% of cases and significantly more frequent in the presence of cagA. Considerable reduction in p27 expression (19%) was found with a tendency for association between cagA(+) and p27(-), although the results were not statistically significant. Concomitant alterations of both suppressor genes were detected in 60% of cases. In the cases cagA(+), 66.7% of them had these concomitant alterations. Conclusions: The data suggest that H. pylori cagA(+) contributes to p53 alteration and indicate that concomitant gene inactivation, with reduced p27 expression, may be a mechanism in which H. pylori can promote the development and progression of gastric cancer. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objective: We aimed to evaluate the inactivation of COX-2, HMLH1 and CDKN2A by promoter methylation and its relationship with the infection by different Helicobacter pylori strains in gastric cancer. Methods: DNA extracted from 76 H. pylori-positive gastric tumor samples was available for promoter methylation identification by methylation-specific PCR and H. pylori subtyping by PCR. Immunohistochemistry was used to determine COX-2, p16(INK4A) and HMLH1 expression. Results: A strong negative correlation was found between the expression of these markers and the presence of promoter methylation in their genes. Among cardia tumors, negativity of p16(INK4A) was a significant finding. on the other hand, in noncardia tumors, the histological subtypes had different gene expression patterns. In the intestinal subtype, a significant finding was HMLH1 inactivation by methylation, while in the diffuse subtype, CDKN2A inactivation by methylation was the significant finding. Tumors with methylated COX-2 and HMLH1 genes were associated with H. pylori vac A s1 (p = 0.025 and 0.047, respectively), and the nonmethylated tumors were associated with the presence of the gene flaA. Conclusions: These data suggest that the inactivation of these genes by methylation occurs by distinct pathways according to the histological subtype and tumor location and depends on the H. pylori genotype. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Aim of the study was to evaluate the influence of an extra corporal perfusion (cardiopulmonary bypass operation - cpb) on activation and biodistribution of Tc-99m labelled granulocytes in pigs with and without inhibition of the granulocytes by a leukocyte inhibition module (LIM). The cpb is often related to an activation of granulocytes resulting in an inflammatory answer. The biological mechanisms are unsolved yet. First trials of our group showed that LIM may inhibit the activation of neutrophils and therefore antagonize a cpb-caused impairment of cardiac function. This study is the continuation of these experiments with a higher number of animals and the focus on scintigraphic imaging. Animals, material, methods: 39 German landrace pigs were subdivided into three groups: group A (control) median sternotomy without cpb, group B with cpb, group C with LIM in addition to cpb. After labelling with Tc-99m-HMPAO autologues granulocytes were reinjected. Subsequently to cpb, the animals underwent scintigraphic imaging. Quantification was performed with ROI evaluation and with tissue samples (section analysis) examined in a well counter. Results:A high uptake of Tc-99m-HMPAO was found in the liver. The count rates in brain, heart, lung, spleen and kidneys were far below. The amount of Tc-99m-activity in the organ related to the half life corrected administered activity [%] was for the tissue samples (group A/B/C): brain 0.01/0.02/0.03; lung 12.1/8.3/11.5; heart 0.35/0.54/0.42; kidney 1.24/0.87/1.02; spleen 4.0/4.0/4.5, liver 16.8/20.9/19.6. The count rates determined by ROI-evaluation of the scintigraphic images related to the total count rate in the image [%] were (group A/B/C): brain 1.1/0.9/1.0; lung 15.6/10.4/12.2; heart 4.0/3.5/3.4; kidney 4.0/2.9/3.2; spleen 7.6/7.7/9.5, liver 23.1/36.7/31.4. A significant difference in the tracer uptake between the groups could neither be detected by scintigraphic imaging nor evaluation of tissue samples. Conclusion: Scintigraphic imaging as well as section analysis showed a comparable biodistribution of the tracer. Therefore, the initial results of our group were not confirmed with a considerably higher number of animals. Neither cpb nor the use of the LIM influenced distribution of Tc-99m-labelled granulocytes in pigs significantly.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Carotenoid concentrations were measured in serum and in both non-cancerous and cancerous gastric mucosal tissues of Korean patients with gastric cancer (n = 18). Carotenoids in serum and gastric tissue were extracted with chloroform/methanol (2:1), and measured using reverse-phase high-performance liquid chromatography with a C30 column. Cryptoxanthin and β-carotene were the major carotenoids in the Korean blood and they had a median ratio of non-cancerous tissue/serum levels which was less than 1.0. No significant differences of Cryptoxanthin and β-carotene levels were found between non-cancerous and cancerous tissues. After incubation of β-carotene with gastric tissue, significantly higher levels of β-carotene breakdown products were produced in the homogenates of cancerous tissue when compared with non-cancerous tissue. Lutein, zeaxanthin and α-carotene were the minor carotenoid constituents in the blood and their median ratio of non-cancerous tissue/serum levels was greater than 1.0. Cancerous tissue had significantly lower levels of lutein, zeaxanthin and α-carotene than did non-cancerous tissue. It appears that the increased breakdown of β-carotene and cryptoxanthin in cancerous tissue can be compensated for by an increased uptake of circulating carotenoids by cancerous tissue, whereas lutein, zeaxanthin and α-carotene levels in cancerous tissue are not able to be maintained.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim: To investigate the occurrence of chromosome 3, 7, 8, 9, and 17 aneuploidies, TP53 gene deletion and p53 protein expression in chronic gastritis, atrophic gastritis and gastric ulcer, and their association with H pylori infection. Methods: Gastric biopsies from normal mucosa (NM, n = 10), chronic gastritis (CG, n = 38), atrophic gastritis (CAG, n = 13) and gastric ulcer (GU, n = 21) were studied using fluorescence in situ hybridization (FISH) and immunohistochemical assay. A modified Giemsa staining technique and PCR were used to detect H pylori. An association of the gastric pathologies and aneuploidies with H pylori infection was assessed. Results: Aneuploidies were increasingly found from CG (21%) to CAG (31%) and to GU (62%), involving mainly monosomy and trisomy 7, trisomies 7 and 8, and trisomies 7, 8 and 17, respectively. A significant association was found between H pylori infection and aneuploidies in CAG (P = 0.0143) and GU (P = 0.0498). No TP53 deletion was found in these gastric lesions, but p53-positive immunoreactivity was detected in 45% (5/11) and 12% (2/17) of CG and GU cases, respectively. However, there was no significant association between p53 expression and H pylori infection. Conclusion: The occurrence of aneuploidies in benign lesions evidences chromosomal instability in early stages of gastric carcinogenesis associated with H pylori infection, which may confer proliferative advantage. The increase of p53 protein expression in CG and GU may be due to overproduction of the wild-type protein related to an inflammatory response in mucosa. © 2006 The WJG Press. All rights reserved.