882 resultados para GA (Genetic Algorithm)
Resumo:
The study is related to lossless compression of greyscale images. The goal of the study was to combine two techniques of lossless image compression, i.e. Integer Wavelet Transform and Differential Pulse Code Modulation to attain better compression ratio. This is an experimental study, where we implemented Integer Wavelet Transform, Differential Pulse Code Modulation and an optimized predictor model using Genetic Algorithm. This study gives encouraging results for greyscale images. We achieved a better compression ration in term of entropy for experiments involving quadrant of transformed image and using optimized predictor coefficients from Genetic Algorithm. In an other set of experiments involving whole image, results are encouraging and opens up many areas for further research work like implementing Integer Wavelet Transform on multiple levels and finding optimized predictor at local levels.
Resumo:
El problema de la regresión simbólica consiste en el aprendizaje, a partir de un conjunto muestra de datos obtenidos experimentalmente, de una función desconocida. Los métodos evolutivos han demostrado su eficiencia en la resolución de instancias de dicho problema. En este proyecto se propone una nueva estrategia evolutiva, a través de algoritmos genéticos, basada en una nueva estructura de datos denominada Straight Line Program (SLP) y que representa en este caso expresiones simbólicas. A partir de un SLP universal, que depende de una serie de parámetros cuya especialización proporciona SLP's concretos del espacio de búsqueda, la estrategia trata de encontrar los parámetros óptimos para que el SLP universal represente la función que mejor se aproxime al conjunto de puntos muestra. De manera conceptual, este proyecto consiste en un entrenamiento genético del SLP universal, utilizando los puntos muestra como conjunto de entrenamiento, para resolver el problema de la regresión simbólica.
Resumo:
Genetic algorithm is an optimization technique based on Darwin evolution theory. In last years its application in chemistry is increasing significantly due the special characteristics for optimization of complex systems. The basic principles and some further modifications implemented to improve its performance are presented, as well as a historical development. A numerical example of a function optimization is also shown to demonstrate how the algorithm works in an optimization process. Finally several chemistry applications realized until now is commented to serve as parameter to future applications in this field.
Resumo:
tThis paper deals with the potential and limitations of using voice and speech processing to detect Obstruc-tive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients whopresent various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set offeatures for detecting OSA. We apply various feature selection and reduction schemes (statistical rank-ing, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, SupportVector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects showsthat in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able todiscriminate quite well between the presence and absence of OSA. However, this is not the case withmild OSA and healthy snoring patients where voice seems to play a secondary role. We found that thebest classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.
Resumo:
The optimal design of a heat exchanger system is based on given model parameters together with given standard ranges for machine design variables. The goals set for minimizing the Life Cycle Cost (LCC) function which represents the price of the saved energy, for maximizing the momentary heat recovery output with given constraints satisfied and taking into account the uncertainty in the models were successfully done. Nondominated Sorting Genetic Algorithm II (NSGA-II) for the design optimization of a system is presented and implemented inMatlab environment. Markov ChainMonte Carlo (MCMC) methods are also used to take into account the uncertainty in themodels. Results show that the price of saved energy can be optimized. A wet heat exchanger is found to be more efficient and beneficial than a dry heat exchanger even though its construction is expensive (160 EUR/m2) compared to the construction of a dry heat exchanger (50 EUR/m2). It has been found that the longer lifetime weights higher CAPEX and lower OPEX and vice versa, and the effect of the uncertainty in the models has been identified in a simplified case of minimizing the area of a dry heat exchanger.
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.
Resumo:
The process of building mathematical models in quantitative structure-activity relationship (QSAR) studies is generally limited by the size of the dataset used to select variables from. For huge datasets, the task of selecting a given number of variables that produces the best linear model can be enormous, if not unfeasible. In this case, some methods can be used to separate good parameter combinations from the bad ones. In this paper three methodologies are analyzed: systematic search, genetic algorithm and chemometric methods. These methods have been exposed and discussed through practical examples.
Resumo:
Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible - or not - to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts
Resumo:
Lautanauhatekniikka on monipuolinen menetelmä esimerkiksi kuvioitujen nauhojen kutomiseen, mutta uusien kuvioaiheiden suunnittelu, tai aloittelijalle jo valmiiden ohjeettomien kuviomallien jäljittely, voi helposti käydä työlääksi menetelmän ominaispiirteiden johdosta. Tämän työn tavoitteena oli kehittää ohjelmallinen työkalu auttamaan näissä ongelmissa automatisoimalla kudontaohjeen etsintä käyttäjän laatimalle tavoitekuviolle. Ratkaisumenetelmän perustaksi valittiin geneettinen algoritmi, minkä johdosta työn keskeisintutkimusongelma oli kartoittaa algoritmin perusoperaatioiden parametrien ja tavoitekuvion kompleksisuuden keskinäisiä riippuvuuksia riittävästi toimivien arvosuositusten antamiseen ohjelman tulevassa käytännön käytössä. Työssä ei kehitetty sovellusalueeseen mukautettuja evoluutiooperaatioita, vaan keskityttiin luomaan hyvin tunnetuista elementeistä perusta, jota voi myöhemmin kehittää eteenpäin.
Resumo:
Currently, a high penetration level of Distributed Generations (DGs) has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the upcoming years. How to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. This master project is intended to develop a control architecture for studying purposes of distribution systems with large scale integration of solar power. As part of the EcoGrid EU Smart Grid project, it focuses on the system modelling and simulation of a Danish representative LV network located in Bornholm island. Regarding the control architecture, two types of reactive control techniques are implemented and compare. In addition, a network voltage control based on a tap changer transformer is tested. The optimized results after applying a genetic algorithm to five typical Danish domestic loads are lower power losses and voltage deviation using Q(U) control, specially with large consumptions. Finally, a communication and information exchange system is developed with the objective of regulating the reactive power and thereby, the network voltage remotely and real-time. Validation test of the simulated parameters are performed as well.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
Atualmente vêm sendo desenvolvidas e utilizadas várias técnicas de modelagem de distribuição geográfica de espécies com os mais variados objetivos. Algumas dessas técnicas envolvem modelagem baseada em análise ambiental, nas quais os algoritmos procuram por condições ambientais semelhantes àquelas onde as espécies foram encontradas, resultando em áreas potenciais onde as condições ambientais seriam propícias ao desenvolvimento dessas espécies. O presente estudo trata do uso da modelagem preditiva de distribuição geográfica de espécies nativas, através da utilização de algoritmo genético, como ferramenta para auxiliar o entendimento dos padrões de distribuição do bioma cerrado no Estado de São Paulo. A metodologia empregada e os resultados obtidos foram considerados satisfatórios para a geração de modelos de distribuição geográfica de espécies vegetais, baseados em dados abióticos, para as regiões de estudo. A eficácia do modelo em predizer a ocorrência de espécies do cerrado é maior se forem utilizados apenas pontos de amostragem com fisionomias de cerrado, excluindo-se áreas de transição. Para minimizar problemas decorrentes da falta de convergência do algoritmo utilizado GARP ("Genetic Algorithm for Rule Set Production"), foram gerados 100 modelos para cada espécie modelada. O uso de modelagem pode auxiliar no entendimento dos padrões de distribuição de um bioma ou ecossistema em uma análise regional.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
The design of a large and reliable DNA codeword library is a key problem in DNA based computing. DNA codes, namely sets of fixed length edit metric codewords over the alphabet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and chemical restrictions of DNA strands. The primary constraints that we consider are the reverse--complement constraint and the fixed GC--content constraint, as well as the basic edit distance constraint between codewords. We focus on exploring the theory underlying DNA codes and discuss several approaches to searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive search algorithm to produce provably optimal DNA codes for codes with small parameter values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes with relatively large parameter values, where we can consider their sizes as reasonable lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA codes with length from 1 to 9 and minimum distance from 1 to 9.
Resumo:
The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.