884 resultados para G520 Systems Design Methodologies
Resumo:
Currently, a lot of visual information present in all media is form vehemently, for example, in print media and interfaces used for publicity in conjunction with informational design. This visual information has great influence in the life of human beings, since the vision of these individuals is the most used sense. Studies on visual identity have not explored this issue in a satisfactory manner, favoring thus the subject of this small development projects in the area. It is noted the need for analyzes to enable implementation principles of project, making them accessible to the comprehension of most individuals. This study aimed to propose an evaluation of visual identities, which were analyzed by means of visual concepts of usability, design methodologies and Gestalt. We contacted design firms specialized in visual identity projects, places where interviews were conducted to collect the brands allowed for analysis. The results point to a frequent demand for the employment of visual usability principles, design methodologies and Gestalt design in visual identities.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a generalized test case generation method, called the G method. Although inspired by the W method, the G method, in contrast, allows for test case suite generation even in the absence of characterization sets for the specification models. Instead, the G method relies on knowledge about the index of certain equivalences induced at the implementation models. We show that the W method can be derived from the G method as a particular case. Moreover, we discuss some naturally occurring infinite classes of FSM models over which the G method generates test suites that are exponentially more compact than those produced by the W method.
Resumo:
The aims of this work are: (i) to produce new experimental data for fretting fatigue considering the presence of a mean bulk stress and (ii) to assess two design methodologies against failure by fretting fatigue. Tests on a cylinder–flat contact configuration were conducted using a fretting apparatus mounted on a servo-hydraulic machine. The material used for both the pads and fatigue specimen was an aeronautical 7050-T7451 Al alloy. The experimental program was designed with all relevant parameters, apart from the mean bulk load (always applied before the contact loads), kept constant. The mean bulk stress varied from compressive to tensile values while maintaining a high peak pressure in order to encourage crack initiation. Two methodologies against fretting fatigue are proposed and confronted against the experimental data. The non-local stress-based methodology considers the evaluation of a critical plane fatigue criterion at the center of a process zone located beneath the contacting surfaces. The results showed that it correctly predicts crack initiation, but was not capable to provide successful prediction of the integrity of the specimens. Alternatively, we considered a crack arrest criterion which has the potential to provide a more complete description about the integrity of the specimens.
Resumo:
Investigating parents’ formal engagement opportunities in public schools serves well to characterize the relationship between states and societies. While the relationship between parental involvement and students’ academic success has been thoroughly investigated, rarely has it been seen to indicate countries’ governing regimes. The researcher was curious to see whether and how does parents’ voice differ in different democracies. The hypothesis was that in mature regimes, institutional opportunities for formal parental engagement are plenty and parents are actively involved; while in young democracies there are less opportunities and the engagement is lower. The assumption was also that parental deliberation in expressing their dissatisfaction with schools differs across democracies: where it is more intense, there it translates to higher engagement. Parents’ informedness on relevant regulations and agendas was assumed to be equally average, and their demographic background to have similar effects on engagement. The comparative, most different systems design was employed where public middle schools last graders’ parents in Tartu, Estonia and in Huntsville, Alabama the United States served as a sample. The multidimensional study includes the theoretical review, country and community analyses, institutional analysis in terms of formal parental involvement, and parents’ survey. The findings revealed sizeable differences between parents’ engagement levels in Huntsville and Tartu. The results indicate passivity in both communities, while in Tartu the engagement seems to be alarmingly low. Furthermore, Tartu parents have much less institutional opportunities to engage. In the United States, multilevel efforts to engage parents are visible from local to federal level, in Estonia similar intentions seem to be missing and meaningful parental organizations do not exist. In terms of civic education there is much room for development in both countries. The road will be longer for a young democracy Estonia in transforming its institutional systems from formally democratic to inherently inclusive.
Resumo:
During the last few decades an unprecedented technological growth has been at the center of the embedded systems design paramount, with Moore’s Law being the leading factor of this trend. Today in fact an ever increasing number of cores can be integrated on the same die, marking the transition from state-of-the-art multi-core chips to the new many-core design paradigm. Despite the extraordinarily high computing power, the complexity of many-core chips opens the door to several challenges. As a result of the increased silicon density of modern Systems-on-a-Chip (SoC), the design space exploration needed to find the best design has exploded and hardware designers are in fact facing the problem of a huge design space. Virtual Platforms have always been used to enable hardware-software co-design, but today they are facing with the huge complexity of both hardware and software systems. In this thesis two different research works on Virtual Platforms are presented: the first one is intended for the hardware developer, to easily allow complex cycle accurate simulations of many-core SoCs. The second work exploits the parallel computing power of off-the-shelf General Purpose Graphics Processing Units (GPGPUs), with the goal of an increased simulation speed. The term Virtualization can be used in the context of many-core systems not only to refer to the aforementioned hardware emulation tools (Virtual Platforms), but also for two other main purposes: 1) to help the programmer to achieve the maximum possible performance of an application, by hiding the complexity of the underlying hardware. 2) to efficiently exploit the high parallel hardware of many-core chips in environments with multiple active Virtual Machines. This thesis is focused on virtualization techniques with the goal to mitigate, and overtake when possible, some of the challenges introduced by the many-core design paradigm.
Resumo:
Library of Congress Subject Headings (LCSH), the standard subject language used in library catalogues, are often criticized for their lack of currency, biased language, and atypical syndetic structure. Conversely, folksonomies (or tags), which rely on the natural language of their users, offer a flexibility often lacking in controlled vocabularies and may offer a means of augmenting more rigid controlled vocabularies such as LCSH. Content analysis studies have demonstrated the potential for folksonomies to be used as a means of enhancing subject access to materials, and libraries are beginning to integrate tagging systems into their catalogues. This study examines the utility of tags as a means of enhancing subject access to materials in library online public access catalogues (OPACs) through usability testing with the LibraryThing for Libraries catalogue enhancements. Findings indicate that while they cannot replace LCSH, tags do show promise for aiding information seeking in OPACs. In the context of information systems design, the study revealed that while folksonomies have the potential to enhance subject access to materials, that potential is severely limited by the current inability of catalogue interfaces to support tag-based searches alongside standard catalogue searches.
Resumo:
OBJECTIVES: To validate the Probability of Repeated Admission (Pra) questionnaire, a widely used self-administered tool for predicting future healthcare use in older persons, in three European healthcare systems. DESIGN: Prospective study with 1-year follow-up. SETTING: Hamburg, Germany; London, United Kingdom; Canton of Solothurn, Switzerland. PARTICIPANTS: Nine thousand seven hundred thirteen independently living community-dwelling people aged 65 and older. MEASUREMENTS: Self-administered eight-item Pra questionnaire at baseline. Self-reported number of hospital admissions and physician visits during 1 year of follow-up. RESULTS: In the combined sample, areas under the receiver operating characteristic curves (AUCs) were 0.64 (95% confidence interval (CI)=0.62-0.66) for the prediction of one or more hospital admissions and 0.68 (95% CI=0.66-0.69) for the prediction of more than six physician visits during the following year. AUCs were similar between sites. In comparison, prediction models based on a person's age and sex alone exhibited poor predictive validity (AUC
Resumo:
This review of Electromagnetic Band Gap (EGB) metamaterials and steering integrated antennas was carried out in IMST GmbH under a short collaboration stay. This activity is in line with Coordinating the Antenna Research in Europe (CARE). The aim is to identify the newest trends, and suggest novel solutions and design methodologies for various applications.
Resumo:
High flux and high CRI may be achieved by combining different chips and/or phosphors. This, however, results in inhomogeneous sources that, when combined with collimating optics, typically produce patterns with undesired artifacts. These may be a combination of spatial, angular or color non-uniformities. In order to avoid these effects, there is a need to mix the light source, both spatially and angularly. Diffusers can achieve this effect, but they also increase the etendue (and reduce the brightness) of the resulting source, leading to optical systems of increased size and wider emission angles. The shell mixer is an optic comprised of many lenses on a shell covering the source. These lenses perform Kohler integration to mix the emitted light, both spatially and angularly. Placing it on top of a multi-chip Lambertian light source, the result is a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with essentially the same size (so the average brightness is not increased). This virtual light source can then be collimated using another optic, resulting in a homogeneous pattern without color separation. Experimental measurements have shown optical efficiency of the shell of 94%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.
Resumo:
Two quasi-aplanatic free-form solid V-groove collimators are presented in this work. Both optical designs are originally designed using the Simultaneous Multiple Surface method in three dimensions (SMS 3D). The second optically active surface in both free-form V-groove devices is designed a posteriori as a grooved surface. First two mirror (XX) design is designed in order to clearly show the design procedure and working principle of these devices. Second, RXI free-form design is comparable with existing RXI collimators; it is a compact and highly efficient design made of polycarbonate (PC) performing very good colour mixing of the RGGB LED sources placed off-axis. There have been presented rotationally symmetric non-aplanatic high efficiency collimators with colour mixing property to be improved and rotationally symmetric aplanatic devices with good colour mixing property and efficiency to be improved. The aim of this work was to design a free-form device in order to improve colour mixing property of the rotationally symmetric nonaplanatic RXI devices and the efficiency of the aplanatic ones.
Resumo:
The previous publications (Miñano et al, 2011) have shown that using a Spherical Geodesic Waveguide (SGW), it can be achieved the super-resolution up to ? /500 close to a set of discrete frequencies. These frequencies are directly connected with the well-known Schumann resonance frequencies of spherical symmetric systems. However, the Spherical Geodesic Waveguide (SGW) has been presented as an ideal system, in which the technological obstacles or manufacturing feasibility and their influence on final results were not taken into account. In order to prove the concept of superresolution experimentally, the Spherical Geodesic Waveguide is modified according to the manufacturing requirements and technological limitations. Each manufacturing process imposes some imperfections which can affect the experimental results. Here, we analyze the influence of the manufacturing limitations on the super-resolution properties of the SGW. Beside the theoretical work, herein, there has been presented the experimental results, as well.
Resumo:
In this work, novel imaging designs with a single optical surface (either refractive or reflective) are presented. In some of these designs, both object and image shapes are given but mapping from object to image is obtained as a result of the design. In other designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs have been done using three different design methods: a SMS design, a compound Cartesian oval surface, and a differential equation method for the limit case of small pupil. At the point-size pupil limit, it is proven that these three methods coincide. In the second part, previous 2D designs are extended to 3D by rotation and the astigmatism of the image has been studied. As an advanced variation, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a curved object surface have been obtained. Finally, this anastigmatic differential equation method has been extended to 3D for the general case, in which freeform surfaces are designed.
Resumo:
Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. In particular, a Dirac delta electric field in the object plane is focused without diffraction limit to the Dirac delta electric field in the image plane. Two devices with positive refraction, the Maxwell Fish Eye lens (MFE) and the Spherical Geodesic Waveguide (SGW) have been claimed to break the diffraction limit using positive refraction with a different meaning. In these cases, it has been considered the power transmission from a point source to a point receptor, which falls drastically when the receptor is displaced from the focus by a distance much smaller than the wavelength. Although these systems can detect displacements up to ?/3000, they cannot be compared to the NRL, since the concept of image is different. The SGW deals only with point source and drain, while in the case of the NRL, there is an object and an image surface. Here, it is presented an analysis of the SGW with defined object and image surfaces (both are conical surfaces), similarly as in the case of the NRL. The results show that a Dirac delta electric field on the object surface produces an image below the diffraction limit on the image surface.
Resumo:
Aplanatic designs present great interest in the optics field since they are free from spherical aberration and linear coma at the axial direction. Nevertheless nowadays it cannot be found on literature any thin aplanatic design based on a lens. This work presents the first aplanatic thin lens (in this case a dome-shaped faceted TIR lens performing light collimation), designed for LED illumination applications. This device, due to its TIR structure (defined as an anomalous microstructure as we will see) presents good color-mixing properties. We will show this by means of raytrace simulations, as well as high optical efficiency.