955 resultados para Frost penetration.
Resumo:
The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79°C. Dehydroxylation occurred at 254 and 291°C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434°C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.
Resumo:
Raman spectra of chillagite, wulfenite, stolzite, scheelite and wolframite were obtained at 298 and 77 K using a Raman microprobe in combination with a thermal stage. Chillagite is a solid solution of wulfenite and stolzite. The spectra of these molybdate minerals are orientation dependent. The band at 695 cm-1 is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The bands at 790 and 881 cm-1 are associated with the antisymmetric and symmetric Ag modes of terminal WO2 whereas the origin of the 806 cm-1 band remains unclear. The 4(Eg) band was absent for scheelite. The bands at 353 and 401 cm-1 are assigned as either deformation modes or as r(Bg) and (Ag) modes of terminal WO2. The band at 462 cm-1 has an equivalent band in the infrared at 455 cm-1 assigned as as(Au) of the (W2O4)n chain. The band at 508 cm-1 is assigned as sym(Bg) of the (W2O4)n chain.
Resumo:
The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.
Resumo:
The Raman spectra at 77 K of the hydroxyl stretching of kaolinite were obtained along the three axes perpendicular to the crystal faces. Raman bands were observed at 3616, 3658 and 3677 cm−1 together with a distinct band observed at 3691 cm−1 and a broad profile between 3695 and 3715 cm−1. The band at 3616 cm−1 is assigned to the inner hydroxyl. The bands at 3658 and 3677 cm−1 are attributed to the out-of-phase vibrations of the inner surface hydroxyls. The Raman spectra of the in-phase vibrations of the inner-surface hydroxyl-stretching region are described in terms of transverse and longitudinal optic splitting. The band at 3691 cm−1 is assigned to the transverse optic and the broad profile to the longitudinal optic mode. This splitting remained even at liquid nitrogen temperature. The transverse optic vibration may be curve resolved into two or three bands, which are attributed to different types of hydroxyl groups in the kaolinite.
Resumo:
A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.
Resumo:
Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.
Resumo:
The Raman spectrum of holmquistite, a Li-containing orthorhombic amphibole from Bessemer City, USA has been measured. The OH-stretching region is characterized by bands at 3661, 3646, 3634 and 3614 cm–1 assigned to 3 Mg–OH, 2 Mg + Fe2+–OH, Mg + 2Fe2+–OH and 3 Fe2+–OH, respectively. These Mg and Fe2+ cations are located at the M1 and M3 sites and have a Fe2+/(Fe2+ + Mg) ratio of 0.35. The 960–1110 cm–1 region represents the antisymmetric Si–O–Si and O–Si–O stretching vibrations. For holmquistite, strong bands are observed around 1022 and 1085 cm–1 with a shoulder at 1127 cm–1 and minor bands at 1045 and 1102 cm–1. In the region 650–800 cm–1 bands are observed at 679, 753 and 791 cm–1 with a minor band around 694 cm–1 attributed to the symmetrical Si–O–Si and Si–O vibrations. The region below 625 cm–1 is characterized by 14 vibrations related to the deformation modes of the silicate double chain and vibrations involving Mg, Fe, Al and Li in the various M sites. The 502 cm–1 band is a Li–O deformation mode while the 456, 551 and 565 cm–1 bands are Al–O deformation modes.
Resumo:
Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.
Resumo:
Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.
Resumo:
The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
A combination of X-ray diffraction, thermal analysis and Raman spectroscopy was employed to characterise the ageing of alumina hydrolysates synthesised from the hydrolysis of anhydrous tri-sec-butoxyaluminium(III). X-Ray diffraction showed that the alumino-oxy(hydroxy) hydrolysates were pseudoboehmite. For boehmite the lamellar spacings are in the b direction and multiple d(020) peaks are observed for the un-aged hydrolysate. After 4 h of ageing, a single d(020) peak is observed at 6.53 Å. Thermal analysis showed five endotherms at 70, 140, 238, 351 and 445°C. These endotherms are attributed to the dehydration and dehydroxylation of the boehmite-like hydrolysate. Raman spectroscopy shows the presence of bands for the washed hydrolysates at 333, 355, 414, 455, 475, 495, 530 and 675 cm–1. These bands are attributed to pseudoboehmite. Ageing of the hydrolysates results in an increase in the crystallite size of the pseudoboehmite.