990 resultados para Fractional Diffusion Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histopathological alterations in human aneurysms and dissections of the thoracic ascending aorta include areas of mucoid degeneration within the medial layer, colocalized with areas of cell disappearance and disruption of extracellular matrix elastic and collagen fibers. We studied the presence of matrix metalloproteinases in relation to their capacity to diffuse through the tissue or to be retained in areas of mucoid degeneration in aneurysms and dissections of the ascending aorta. Ascending aortas from 9 controls, 33 patients with aneurysms, and 14 with acute dissections, all collected at surgery, were analyzed. The morphological aspect was similar whatever the etiology or phenotypic expression of the pathological aortas, involving areas of extracellular matrix breakdown and cell rarefaction associated with mucoid degeneration. Release of proMMP-2, constitutively expressed by smooth muscle cells, was not different between controls and aneurysmal aortas, whereas the aneurysmal aortas released more of the active form. Release of pro and active MMP-9 was also similar between controls and aneurysmal aortas. Immunohistochemical staining of MMP-2 and MMP-9 was weak in both control and pathological aortas. In contrast, released MMP-7 (matrilysin) and MMP-3 (stromelysin-1) could not be detected in conditioned media but were present in tissue extracts with no detectable quantitative difference between controls and pathological aortas. Immunohistochemical staining of MMP-7 and MMP-3 revealed their retention in areas of mucoid degeneration, and semiquantitative evaluation of immunostaining showed more MMP-7 in pathological aortas than in controls. In conclusion, areas of mucoid degeneration, the hallmark of aneurysms, and dissections of thoracic ascending aortas, whatever their etiology, are not inert and can retain specific proteases. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ussing [1] considered the steady flux of a single chemical component diffusing through a membrane under the influence of chemical potentials and derived from his linear model, an expression for the ratio of this flux and that of the complementary experiment in which the boundary conditions were interchanged. Here, an extension of Ussing's flux ratio theorem is obtained for n chemically interacting components governed by a linear system of diffusion-migration equations that may also incorporate linear temporary trapping reactions. The determinants of the output flux matrices for complementary experiments are shown to satisfy an Ussing flux ratio formula for steady state conditions of the same form as for the well-known one-component case. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The aim of this study was to evaluate the vestibular-palatal diffusion of 4% articaine with epinephrine 1: 100,000 and 1: 200,000, in impacted maxillary third molar extractions, without palatal injection. Materials and Method: Two hundred teeth were selected from patients age 15 to 46. Patients were divided into 4 groups: 1A, were anesthetized with 4% articaine 1: 100,000 and the surgery was initiated 5 minutes following anesthesia. 1B, used 4% articaine 1: 100,000 but the surgery was started 10 minutes after anesthesia. 2A, used 4% articaine 1: 200,000 the surgery was started 5 minutes after. 2B, used 4% articaine 1: 200,000 but 10 minutes was allowed for anesthetic diffusion before the initiation of in groups (50 extractions each) only buccal vestibule anesthesia was initially administered (i.e. no palatal injections were used). Results: The rate of sufficient vestibule-palatal diffusion, as determined by the lack of necessity of supplemental palatal anesthesia, was: 1A(84%), 1B(98%), 2A(78%), 2B(82%). Chi-square (X2) and residual analyses showed that a higher vestibule-palatal diffusion was obtained using 4% articaine 1: 100,000 with a period of 10 minutes (p<0.05). Conclusions: Most of the extractions could be performed only with vestibule anesthesia. However, vasoconstrictor concentration and the time interval between administration of the anesthetic and initiation of surgery did influence buccal vestibule-palatal diffusion of 4% articaine in the extraction models used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the quantum trajectory method to current noise in resonant tunneling devices. The results from dynamical simulation are compared with those from unconditional master equation approach. We show that the stochastic Schrodinger equation approach is useful in modeling the dynamical processes in mesoscopic electronic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/-0.19 and 1.20 +/-0.36. For recovered tissue the mean values were 0.99 +/-0.25 and 1.87 +/-0.71, respectively. There was a significant difference between these two regions for both measures (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption and diffusion in a porous media were studied theoretically and experimentally with a differential transient permeation method. The porous medium is allowed to equilibrate at some specified loading, and then the time trajectory of the permeation process is followed after a small difference between the pressures at the end faces of the porous medium is introduced at time t = 0 +. Such a trajectory us. time would contain adsorption and diffusion characteristics of the system. By studying this for various surface loadings, pore and surface diffusions can be fully characterized. Mathematical modeling of transient permeation is detailed for pure gases or vapors diffusion and adsorption in porous media. Effects of nonlinearity of adsorption isotherm, pressure, temperature and heat effects were considered in the model. Experimental data of diffusion and adsorption of propane, n-butane and n-hexane in activated carbon at different temperatures and loadings show the potential of this method as a useful tool to study adsorption kinetics in porous media. Validity of the model is best tested against the transient data where the kinetics curves exhibit sigmoidal shape, which is a result of the diffusion and adsorption rate during the initial stage of permeation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dubinin-Radushkevich (DR) equation is widely used for description of adsorption in microporous materials, especially those of a carbonaceous origin. The equation has a semi-empirical origin and is based on the assumptions of a change in the potential energy between the gas and adsorbed phases and a characteristic energy of a given solid. This equation yields a macroscopic behaviour of adsorption loading for a given pressure. In this paper, we apply a theory developed in our group to investigate the underlying mechanism of adsorption as an alternative to the macroscopic description using the DR equation. Using this approach, we are able to establish a detailed picture of the adsorption in the whole range of the micropore system. This is different from the DR equation, which provides an overall description of the process. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review provides an overview of surface diffusion and capillary condensate flow in porous media. Emphasis has been placed on the distinction between purely surface diffusion, multilayer surface diffusion, and, capillary condensate flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the current status of the various diffusion theories for surface diffusion in the literature. The inadequacy of these models to explain the surface diffusion of many hydrocarbons in microporous activated carbon is shown in this paper. They all can explain the increase of the surface diffusivity (D-mu) with loading, but cannot explain the increase of the surface permeability (D(mu)partial derivativeC(mu)/partial derivativeP) with loading as observed in our data of diffusion of hydrocarbons in activated carbon, even when the surface heterogeneity is accounted for in those models. The explanation for their failure was presented, and we have put forward a theory to explain the increase of surface diffusion permeability with loading. This new theory assumes the variation of the activation energy for surface diffusion with surface loading, and it is validated with diffusion data of propane, n-butane, n-hexane, benzene and ethanol in activated carbon. (C) 2001 Elsevier Science Ltd. All rights reserved.