990 resultados para Fluvial incision
Resumo:
As várzeas do rio Solimões são áreas inundáveis com predomínio de Gleissolos, onde se estabeleceu grande parte da população rural do Estado do Amazonas. Os objetivos deste trabalho foram caracterizar e classificar cinco perfis de Gleissolos, distribuídos em três áreas da bacia do Médio Amazonas, localizados nas várzeas dos municípios de Manacapuru e Iranduba. Após a descrição morfológica dos solos, coletaram-se amostras dos seus horizontes para caracterização física, química e mineralógica. Similarmente, todos os perfis apresentaram expressiva gleização na matriz do solo, com cores cinzenta a cinzenta-esverdeada, nos horizontes mais superficiais, e cinzenta-clara a cinzenta-escura, nos subsuperficiais, denotando a redução do ferro. Os teores mais elevados da fração areia em horizontes de subsuperfície indicaram presença de diferentes camadas de deposição fluvial, enquanto os elevados teores de silte evidenciaram a natureza sedimentar recente e o baixo grau de desenvolvimento pedogenético desses solos. Os cátions predominantes nos solos foram Ca2+ e Mg2+, que apresentaram porcentagens de sódio trocável (PST), com amplitude de variação entre 0,70 e 2,09. Os valores de carbono orgânico encontrados foram menores de 80 g kg-1, apresentando a natureza mineral dos sedimentos recém-depositados. A composição mineralógica da fração argila revelou presença significativa de argilominerais 2:1, mas sem grande variabilidade entre os perfis. Esses resultados refletiram-se em elevada soma e saturação por bases, caracterizando solos eutróficos e com argila de atividade alta.
Resumo:
The Pantanal region can be characterized as a quaternary floodplain with predominant sedimentation in the form of alluvial fans. In the geomorphologic and sedimentary evolution, the avulsion process is inherent to this depositional system and its dynamics, together with surface water floods, influence soil sedimentation on this plain. The knowledge and differentiation of these two events can contribute to a better understanding of the variability of soil properties and distribution under the influence of these sedimentation processes. Therefore, this study investigated the genesis of soils in the Northern Pantanal with textural contrasts in deeper horizons and their relationship with the depositional system dynamics. We analyzed four soil profiles in the region of Barão de Melgaço, Mato Grosso State, Brazil (RPPN SESC Pantanal). Two profiles were sampled near the Rio Cuiabá (AP1 and AP4) and two near the Rio São Lourenço (AP10 and AP11). In AP11, the horizons contrast in particle size between the profile basis and the surface. In AP1, AP4 and AP10, the horizons overlaying the sand layer have similar particle size properties, mainly in terms of sand distribution. In the first case, floods (surface water) seem to have originated the horizons and layers with contrasting texture. In the second case, avulsion is the most pronounced process. Therefore, the two modes can form soils with contrasting texture that are discriminable by soil morphology, based on the distinct features associated to the specific sedimentation processes.
Resumo:
The presence of compacted layers in soils can induce subprocesses (e.g., discontinuity of water flow) and induces soil erosion and rill development. This study assesses how rill erosion in Oxisols is affected by a plow pan. The study shows that changes in hydraulic properties occur when the topsoil is eroded because the compacted layer lies close below the surface. The hydraulic properties that induce sediment transport and rill formation (i.e., hydraulic thresholds at which these processes occur) are not the same. Because of the resistance of the compacted layer, the hydraulic conditions leading to rill incision on the soil surface differed from the conditions inducing rill deepening. The Reynolds number was the best hydraulic predictor for both processes. The formed rills were shallow and could easily be removed by tillage between crops. However, during rill development, large amounts of soil and contaminants could also be transferred.
Resumo:
ABSTRACT Preservation of mangroves, a very significant ecosystem from a social, economic, and environmental viewpoint, requires knowledge on soil composition, genesis, morphology, and classification. These aspects are of paramount importance to understand the dynamics of sustainability and preservation of this natural resource. In this study mangrove soils in the Subaé river basin were described and classified and inorganic waste concentrations evaluated. Seven pedons of mangrove soil were chosen, five under fluvial influence and two under marine influence and analyzed for morphology. Samples of horizons and layers were collected for physical and chemical analyses, including heavy metals (Pb, Cd, Mn, Zn, and Fe). The moist soils were suboxidic, with Eh values below 350 mV. The pH level of the pedons under fluvial influence ranged from moderately acid to alkaline, while the pH in pedons under marine influence was around 7.0 throughout the profile. The concentration of cations in the sorting complex for all pedons, independent of fluvial or marine influence, indicated the following order: Na+>Mg2+>Ca2+>K+. Mangrove soils from the Subaé river basin under fluvial and marine influence had different morphological, physical, and chemical characteristics. The highest Pb and Cd concentrations were found in the pedons under fluvial influence, perhaps due to their closeness to the mining company Plumbum, while the concentrations in pedon P7 were lowest, due to greater distance from the factory. For containing at least one metal above the reference levels established by the National Oceanic and Atmospheric Administration (United States Environmental Protection Agency), the pedons were classified as potentially toxic. The soils were classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico in according to the Brazilian Soil Classification System, indicating potential toxicity and very poor drainage, except for pedon P7, which was classified in the same subgroup as the others, but different in that the metal concentrations met acceptable standards.
Resumo:
We have used surface-based electrical resistivity tomography to detect and characterize preferential hydraulic pathways in the immediate downstream area of an abandoned, hazardous landfill. The landfill occupies the void left by a former gravel pit and its base is close to the groundwater table and lacking an engineered barrier. As such, this site is remarkably typical of many small- to medium-sized waste deposits throughout the densely populated and heavily industrialized foreland on both sides of the Alpine arc. Outflows of pollutants lastingly contaminated local drinking water supplies and necessitated a partial remediation in the form of a synthetic cover barrier, which is meant to prevent meteoric water from percolating through the waste before reaching the groundwater table. Any future additional isolation of the landfill in the form of lateral barriers thus requires adequate knowledge of potential preferential hydraulic pathways for outflowing contaminants. Our results, inferred from a suite of tomographically inverted surfaced-based electrical resistivity profiles oriented roughly perpendicular to the local hydraulic gradient, indicate that potential contaminant outflows would predominantly occur along an unexploited lateral extension of the original gravel deposit. This finds its expression as a distinct and laterally continuous high-resistivity anomaly in the resistivity tomograms. This interpretation is ground-truthed through a litholog from a nearby well. Since the probed glacio-fluvial deposits are largely devoid of mineralogical clay, the geometry of hydraulic and electrical pathways across the pore space of a given lithological unit can be assumed to be identical, which allows for an order-of-magnitude estimation of the overall permeability structure. These estimates indicate that the permeability of the imaged extension of the gravel body is at least two to three orders-of-magnitude higher than that of its finer-grained embedding matrix. This corroborates the preeminent role of the high-resistivity anomaly as a potential preferential flow path.
Resumo:
BACKGROUND: Since the introduction of the endoscopic endonasal approaches in the field of skull base surgery during the last two decades, several variants of the sella turcica endoscopic surgery have been described. The aim of this study is to provide a stepwise description of one of these variants in a minimally invasive/maximally efficient perspective. METHOD: For the majority of our sella turcica pathologies, we have progressively adopted a uninostril endoscopic approach that is very conservative towards the nasal mucosa with a very limited mucosal incision, resection of the vomer and allowing an almost ad integrum sellar floor reconstruction, without compromising the efficacy and completeness of both surgical oncologic and endocrine targets. CONCLUSION: The uninostril trans-sphenoidal endoscopic endonasal approach to sella turcica is tailored to ally maximal efficiency and minimal invasiveness.
Resumo:
The purpose of this study was to evaluate and compare the benefits of endoscopic saphenous vein harvesting (EVH) with the traditional incision technique (TIT) for coronary artery bypass grafting (CABG) in respect to the technical procedure and clinical outcome. In a prospective nonrandomized, case-matched study the greater saphenous vein was harvested for CABG in 22 patients using the endoscopic technique and in 18 patients with the traditional method. Comparisons were made for the operating time, length of incision and vein harvested, graft quality, postoperative complications, and pain assessment. Patient demographics were well matched. EVH required smaller incisions than did the TIT (10.5 +/- 6.6 vs. 31.2 +/- 7.8 cm, respectively; p < 0.0001). Harvest time and vein quality were comparable in the two groups. Total vein operating time was shorter following the endoscopic technique (60 +/- 24 vs. 100 +/- 35 minutes, respectively; p < 0.0001). EVH had fewer complications (NS), and postoperative pain was significantly less (p = 0.0034). The major advantages of endoscopic vein harvesting are a significant reduction of postoperative pain and strikingly better cosmetic results. Wound complications seem to be less frequent.
Resumo:
We formulate a new mixing model to explore hydrological and chemical conditions under which the interface between the stream and catchment interface (SCI) influences the release of reactive solutes into stream water during storms. Physically, the SCI corresponds to the hyporheic/riparian sediments. In the new model this interface is coupled through a bidirectional water exchange to the conventional two components mixing model. Simulations show that the influence of the SCI on stream solute dynamics during storms is detectable when the runoff event is dominated by the infiltrated groundwater component that flows through the SCI before entering the stream and when the flux of solutes released from SCI sediments is similar to, or higher than, the solute flux carried by the groundwater. Dissolved organic carbon (DOC) and nitrate data from two small Mediterranean streams obtained during storms are compared to results from simulations using the new model to discern the circumstances under which the SCI is likely to control the dynamics of reactive solutes in streams. The simulations and the comparisons with empirical data suggest that the new mixing model may be especially appropriate for streams in which the periodic, or persistent, abrupt changes in the level of riparian groundwater exert hydrologic control on flux of biologically reactive fluxes between the riparian/hyporheic compartment and the stream water.
Resumo:
Leaf litter inputs and retention play an important role in ecosystem functioning in forested streams. We examined colonization of leaves by microbes (bacteria, fungi, and protozoa) and fauna in Fuirosos, an intermittent forested Mediterranean stream. Black poplar (Populus nigra) and plane (Platanus acerifolia) leaf packs were placed in the stream for 4 mo. We measured the biomasses and calculated the densities of bacteria, fungi, protozoa, meiofauna, and macroinvertebrates to determine their dynamics and potential interactions throughout the colonization process. Colonization was strongly correlated with hydrological variability (defined mainly by water temperature and discharge). The 1st week of colonization was characterized by hydrological stability and warm water temperatures, and allocation of C from microbial to invertebrate compartments on the leaf packs was rapid. Clumps of fine particulate organic matter (FPOM) were retained by the leaf packs, and enhanced rapid colonization by microfauna and meiofaunal collector-gatherers (ostracods and copepods). After 2 wk, an autumnal flood caused a 20-fold increase in water flow. Higher discharge and lower water temperature caused FPOM-related fauna to drift away from the packs and modified the subsequent colonization sequence. Fungi showed the highest biomass, with similar values to those recorded at the beginning of the experiment. After 70 d of postflood colonization, fungi decreased to nearly 40% of the total C in the leaf packs, whereas invertebrates became more abundant and accounted for 60% of the C. Natural flood occurrence in Mediterranean streams could be a key factor in the colonization and processing of organic matter.
Resumo:
Una de les obres públiques més grans mai escomeses per l'home, i a la Xina possiblement només comparable a la Gran Muralla, és a punt d¿esdevenir una realitat: l'embassament de les Tres Gorges. Una enorme paret de formigó al més llarg i cabalós dels rius xinesos, el Iang-Tsé, acabarà amb una tràgica història de terribles inundacions i milers de morts, alhora que produirà una ingent quantitat d'electricitat (la central hidroelèctrica annexa a la presa serà la més gran de tot el món) i convertirà el riu en la principal via de comunicació fluvial del planeta. La construcció de embassament, però, suposarà també enormes i greus conseqüències.
Resumo:
Una de les obres públiques més grans mai escomeses per l'home, i a la Xina possiblement només comparable a la Gran Muralla, és a punt d¿esdevenir una realitat: l'embassament de les Tres Gorges. Una enorme paret de formigó al més llarg i cabalós dels rius xinesos, el Iang-Tsé, acabarà amb una tràgica història de terribles inundacions i milers de morts, alhora que produirà una ingent quantitat d'electricitat (la central hidroelèctrica annexa a la presa serà la més gran de tot el món) i convertirà el riu en la principal via de comunicació fluvial del planeta. La construcció de embassament, però, suposarà també enormes i greus conseqüències.
Resumo:
An important evaporitic sedimentation occurred during the Paleogene (Eocene to lower Oligocene) in the Barberà sector of the southeastern margin of the Tertiary Ebro Basin. This sedimentation took place in shallow lacustrine environments and was controlled by a number of factors: 1) the tectonic structuration of the margin; 2) the high calcium sulphate content in the meteoric waters coming from the marginal reliefs; 3) the semiarid climate; and 4) the development of large alluvial fans along the basin margin, which also conditioned the location of the saline lakes. The evaporites are currently composed of secondary gypsum in surface and anhydrite at depth. There are, however, vestiges of the local presence of sodium sulphates. The evaporite units, with individual thicknesses ranging between 50 and 100 m, are intercalated within various lithostratigraphic formations and exhibit a paleogeographical pattern. The units located closer to the basin margin are characterized by a massive gypsum lithofacies (originally, bioturbated gypsum) bearing chert, and also by meganodular gypsum locally (originally, meganodules of anhydrite) in association with red lutites and clastic intercalations (gypsarenites, sandstones and conglomerates). Chert, which is only linked to the thickest gypsum layers, seems to be an early diagenetic, lacustrine product. Cyclicity in these proximal units indicates the progressive development of lowsalinity, lacustrine bodies on red mud flats. At the top of some cycles, exposure episodes commonly resulted in dissolution, erosion, and the formation of edaphic features. In contrast, the units located in a more distal position with regard to the basin margin are formed by an alternation of banded-nodular gypsum and laminated gypsum layers in association with grey lutites and few clastic intercalations. These distal units formed in saline lakes with a higher ionic concentration. Exposure episodes in these lakes resulted in the formation of synsedimentary anhydrite and sabkha cycles. In some of these units, however, outer rims characterized by a lithofacies association similar to that of the proximal units occur (nodular gypsum, massive gypsum and chert nodules).
Resumo:
BACKGROUND: Esophageal replacement for caustic stenosis in children poses a challenging surgical problem. Blind removal of the injured esophagus without thoracotomy through a left cervical and transhiatal approach followed by an orthotopic esophageal replacement using either the colon or the stomach is a difficult procedure and can be dangerous in children. We performed our first total laparoscopic transhiatal esophagectomy in February 2007. We aim to compare this new technique to the previously applied method of blind closed-chest esophagectomy through a cervicotomy and laparotomy. METHODS: We analyzed the surgery and follow-up of 40 children operated upon for extensive irreversible caustic burns of the esophagus. The first 20 esophageal replacements were performed following a blind dissection of the mediastinum through a cervical incision and a laparotomy for esophagectomy (Group I). The last 20 esophageal replacements were performed after laparoscopic transhiatal dissection in the mediastinum and cervicotomy in the neck for esophagectomy (Group II). All operations were performed under the supervision of the same senior surgeon. RESULTS: Average age at the time of surgery was the same in both groups. Total esophagectomy was achieved in 45.0% of cases in Group I versus in 90.0% of cases in Group II. Colon was used in 80.0% of cases in Group I and in 90.0% in Group II. The mean duration of surgery was one hour longer in the laparoscopy group. One vascular injury was reported in the blind laparotomy group. Pneumothorax was more frequent in Group II without significant consequences besides drainage. Average time of extubation was about the same in both groups (1.8days). CONCLUSION: Laparoscopic transhiatal esophagectomy for caustic burns before esophageal replacement in children is safe and effective. It could avoid vascular and bronchial mediastinal injuries as the dissection is performed under direct visual control. The routine use of laparoscopic assistance by a senior surgeon improves the safety of esophageal dissection and reduces life-threatening complications.