861 resultados para Fluidized Bed
Resumo:
Three spatial structure groups of radionuclides in U and Th series, 210Pb-excess and 137Cs, and 40K were found based on analyzing temporal and spatial datum of their content by factor analysis with oblique rotation in Nhatrang bay. U and Th spatial structure with their contours decreased toward the offshore, ran longshore and divided seawater of bay into two parts with strong gradient on both sides. Inside part located from center of Nhatrang bay toward the seashore with three main deposit centers of their contents higher than 23 Bq/kg.dry for 238U and 40 Bq/kg.dry for 232Th, indicated unstability of shoreline. Almost sediments coming from river extended toward the offshore, were stopped and transported toward southeastern. The outside part was less than above mentioned content. The boundary line between two parts superposed with the constantly limit line of turbid plume in the rainy season. Direct influence of the continental runoff was limited by the 9 Bq/kg.dry contour of 238U, 19 Bq/kg.dry contour of 232Th. Longshore current was a predominant process whereas lateral transport as sifting and winnowing process of finer grains in sediments of Nhatrang bay. Areas that had very low content of 137Cs and 210 Pb-excess adjoining shoreline showed areas being eroded. Accumulation of 137Cs and 210 Pbexcess nearby river mouth characterized for fine compositions of sediments controlled by seasonal plumes and sites further toward the south indicated finer materials transported from river and accumulated in lack of hydrodynamic process. Near shore accumulation of 40K revealed the sediments there originated from bed erosion.
Resumo:
A host of methods and tools to support designing are being developed in Cambridge EDC. These range from tools for design management to those for the generation and selection of design ideas, layouts, materials and production processes. A project, to develop a device to improve arm mobility of muscular dystrophy sufferers, is undertaken as a test-bed to evaluate and improve these methods and tools as well as to observe and modify its design and management processes. This paper presents the difficulties and advantages of using design methods and tools within this rehabilitation design context, with special focus on the evolution of the designs, tools, and management processes.
Resumo:
Computational fluid dynamics (CFD) simulations are becoming increasingly widespread with the advent of more powerful computers and more sophisticated software. The aim of these developments is to facilitate more accurate reactor design and optimization methods compared to traditional lumped-parameter models. However, in order for CFD to be a trusted method, it must be validated using experimental data acquired at sufficiently high spatial resolution. This article validates an in-house CFD code by comparison with flow-field data obtained using magnetic resonance imaging (MRI) for a packed bed with a particle-to-column diameter ratio of 2. Flows characterized by inlet Reynolds numbers, based on particle diameter, of 27, 55, 111, and 216 are considered. The code used employs preconditioning to directly solve for pressure in low-velocity flow regimes. Excellent agreement was found between the MRI and CFD data with relative error between the experimentally determined and numerically predicted flow-fields being in the range of 3-9%. © 2012 American Institute of Chemical Engineers (AIChE).
Resumo:
The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Successful applications of expanded bed adsorption (EBA) technology have been widely reported in the literature for protein purification. Little has been reported on the recovery of natural products and active components of Chinese herbal preparations using EBA technology. In this study, the hydrodynamic behavior in an expanded bed of cation resin, 001 x 7 Styrene-DVB, was investigated. Ephedrine hydrochloride (EH) was used as a model natural product to test the dynamic binding capacity (DBC) in the expanded bed. EBA of EH directly from a feedstock containing powdered herbs has also been investigated. These particles are different from commercially available expanded bed adsorbents by virtue of their large size (20S to 1030 gm). When the adsorbent bed is expanded to approximately 1.3 to 1.5 times its settled bed height, the axial liquid-phase dispersion coefficient was found to be of the order 10(-5) m(2) s(-1), which falls into the range 1.0 x 10(-6) to 1.0 X 10(-5) m(2) s(-1) observed previously in protein purification. Because of the favorable column efficiency (low axial dispersion coefficient), the recovery yield and purification factor values of EH directly from a feedstock reached 86.5% and 18, respectively. The results suggest that EBA technology holds promise for the recovery of natural products and active components of Chinese herbal preparations.
Resumo:
Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimal conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0(#)diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751).