966 resultados para Flameless combustion
Resumo:
The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.
Resumo:
This paper demonstrates the application of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques to a particle-laden reacting flow of pulverized coal. A laboratory-scale open-type annular burner is utilized to generate velocity profiles of coal particles and micrometric alumina particles. Pair-wise two-component LDV measurements and high-speed stereo PIV measurements provide three-dimensional velocity components of the flow field. A detailed comparison of velocities for alumina and coal particle seeding revealed differences attributed to the wide size distribution of coal particles. In addition, the non-spherical shape and high flame luminosity associated with coal particle combustion introduces noise to the Mie scatter images. The comparison of mean and RMS velocities measured by LDV and PIV techniques showed that PIV measurements are affected by the wide size distribution of coal particles, whereas LDV measurements become biased toward the velocity of small particles, as signals from large particles are rejected. This small-particle bias is also reflected in the spectral characteristics for both techniques, which are in good agreement within the range of frequencies accessible. PIV measurements showed an expected lack of response of large coal particles to the turbulence fluctuations. The overall good agreement between LDV and PIV measurements demonstrates the applicability of the high-speed PIV technique to a particle-laden, high luminosity coal flame while highlighting some of its limitations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.
Resumo:
A novel technique, using a 'flying' Hot Wire Anemometer is described; it is shown how the turbulent structure in a motored engine, using a high molecular weight gas as the working fluid, may be investigated with relative simplicity and very little engine modification. Initial results are presented for integral and micro length scales, which are within the range expected based on previous work. Copyright © 1987 Society of Automotive Engineers, Inc.
Resumo:
An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.
Resumo:
In this paper we describe the time-varying amplitude and its relation to the global heat release rate of self-excited azimuthal instabilities in a simple annular combustor operating under atmospheric conditions. The combustor was modular in construction consisting of either 12, 15 or 18 equally spaced premixed bluff-body flames around a fixed circumference, enabling the effect of large-scale interactions between adjacent flames to be investigated. High-speed OH* chemiluminescence imaged from above the annulus and pressure measurements obtained at multiple locations around the annulus revealed that the limit cycles of the modes are degenerate in so much as they undergo continuous transitions between standing and spinning modes in both clockwise (CW) and anti-clockwise (ACW) directions but with the same resonant frequency. Similar behaviour has been observed in LES simulations which suggests that degenerate modes may be a characteristic feature of self-excited azimuthal instabilities in annular combustion chambers. By modelling the instabilities as two acoustic waves of time-varying amplitude travelling in opposite directions we demonstrate that there is a statistical prevalence for either standing m=1 or spinning m=±1 modes depending on flame spacing, equivalence ratio, and swirl configuration. Phase-averaged OH* chemiluminescence revealed a possible mechanism that drives the direction of the spinning modes under limit-cycle conditions for configurations with uniform swirl. By dividing the annulus into inner and outer annular regions it was found that the spin direction coincided with changes in the spatial distribution of the peak heat release rate relative to the direction of the bulk swirl induced along the annular walls. For standing wave modes it is shown that the globally integrated fluctuations in heat release rate vary in magnitude along the acoustic mode shape with negligible contributions at the pressure nodes and maximum contributions at the pressure anti-nodes. © 2013.
Oxygen carrier dispersion in inert packed beds to improve performance in chemical looping combustion
Resumo:
Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.
Resumo:
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.