940 resultados para Finite elements methods, Radial basis function, Interpolation, Virtual leaf, Clough-Tocher method
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Utilizou-se o método seqüencial Monte Carlo / Mecânica Quântica para obterem-se os desvios de solvatocromismo e os momentos de dipolo dos sistemas de moléculas orgânicas: Uracil em meio aquoso, -Caroteno em Ácido Oléico, Ácido Ricinoléico em metanol e em Etanol e Ácido Oléico em metanol e em Etanol. As otimizações das geometrias e as distribuições de cargas foram obtidas através da Teoria do Funcional Densidade com o funcional B3LYP e os conjuntos de funções de base 6-31G(d) para todas as moléculas exceto para a água e Uracil, as quais, foram utilizadas o conjunto de funções de base 6-311++G(d,p). No tratamento clássico, Monte Carlo, aplicou-se o algoritmo Metropólis através do programa DICE. A separação de configurações estatisticamente relevantes para os cálculos das propriedades médias foi implementada com a utilização da função de auto-correlação calculada para cada sistema. A função de distribuição radial dos líquidos moleculares foi utilizada para a separação da primeira camada de solvatação, a qual, estabelece a principal interação entre soluto-solvente. As configurações relevantes da primeira camada de solvatação de cada sistema foram submetidas a cálculos quânticos a nível semi-empírico com o método ZINDO/S-CI. Os espectros de absorção foram obtidos para os solutos em fase gasosa e para os sistemas de líquidos moleculares comentados. Os momentos de dipolo elétrico dos mesmos também foram obtidos. Todas as bandas dos espectros de absorção dos sistemas tiveram um desvio para o azul, exceto a segunda banda do sistema de Beta-Caroteno em Ácido Oléico que apresentou um desvio para o vermelho. Os resultados encontrados apresentam-se em excelente concordância com os valores experimentais encontrados na literatura. Todos os sistemas tiveram aumento no momento de dipolo elétrico devido às moléculas dos solventes serem moléculas polares. Os sistemas de ácidos graxos em álcoois apresentaram resultados muito semelhantes, ou seja, os ácidos graxos mencionados possuem comportamentos espectroscópicos semelhantes submetidos aos mesmos solventes. As simulações através do método seqüencial Monte Carlo / Mecânica Quântica estudadas demonstraram que a metodologia é eficaz para a obtenção das propriedades espectroscópicas dos líquidos moleculares analisados.
Resumo:
A inversão de momentos de fonte gravimétrica tridimensional é analisada em duas situações. Na primeira se admite conhecer apenas a anomalia. Na segunda se admite conhecer, além da anomalia, informação a priori sobre o corpo anômalo. Sem usar informação a priori, mostramos que é possível determinar univocamente todo momento, ou combinação linear de momentos, cujo núcleo polinomial seja função apenas das coordenadas Cartesianas que definem o plano de medida e que tenha Laplaciano nulo. Além disso, mostramos que nenhum momento cujo núcleo polinomial tenha Laplaciano não nulo pode ser determinado. Por outro lado, informação a priori é implicitamente introduzida se o método de inversão de momentos se baseia na aproximação da anomalia pela série truncada obtida de sua expansão em multipolos. Dado um centro de expansão qualquer, o truncamento da série impõe uma condição de regularização sobre as superfícies equipotenciais do corpo anômalo, que permite estimar univocamente os momentos e combinações lineares de momentos que são os coeficientes das funções-bases da expansão em multipolos. Assim, uma distribuição de massa equivalente à real é postulada, sendo o critério de equivalência especificado pela condição de ajuste entre os campos observado e calculado com a série truncada em momentos de uma ordem máxima pré-estabelecida. Os momentos da distribuição equivalente de massa foram identificados como a solução estacionária de um sistema de equações diferenciais lineares de 1a. ordem, para a qual se asseguram unicidade e estabilidade assintótica. Para a série retendo momentos até 2a. ordem, é implicitamente admitido que o corpo anômalo seja convexo e tenha volume finito, que ele esteja suficientemente distante do plano de medida e que a sua distribuição espacial de massa apresente três planos ortogonais de simetria. O método de inversão de momentos baseado na série truncada (IMT) é adaptado para o caso magnético. Para este caso, mostramos que, para assegurar unicidade e estabilidade assintótica, é suficiente pressupor, além da condição de regularização, a condição de que a magnetização total tenha direção e sentido constantes, embora desconhecidos. O método IMT baseado na série de 2a. ordem (IMT2) é aplicado a anomalias gravimétricas e magnéticas tridimensionais sintéticas. Mostramos que se a fonte satisfaz as condições exigidas, boas estimativas da sua massa ou vetor momento de dipolo anômalo total, da posição de seu centro de massa ou de momento de dipolo e das direções de seus três eixos principais são obtidas de maneira estável. O método IMT2 pode falhar parcialmente quando a fonte está próxima do plano de medida ou quando a anomalia tem efeitos localizados e fortes de um corpo pequeno e raso e se tenta estimar os parâmetros de um corpo grande e profundo. Definimos por falha parcial a situação em que algumas das estimativas obtidas podem não ser boas aproximações dos valores verdadeiros. Nas duas situações acima descritas, a profundidade do centro da fonte (maior) e as direções de seus eixos principais podem ser erroneamente estimadas, embora que a massa ou vetor momento de dipolo anômalo total e a projeção do centro desta fonte no plano de medida ainda sejam bem estimados. Se a direção de magnetização total não for constante, o método IMT2 pode fornecer estimativas erradas das direções dos eixos principais (mesmo se a fonte estiver distante do plano de medida), embora que os demais parâmetros sejam bem estimados. O método IMT2 pode falhar completamente se a fonte não tiver volume finito. Definimos por falha completa a situação em que qualquer estimativa obtida pode não ser boa aproximação do valor verdadeiro. O método IMT2 é aplicado a dados reais gravimétricos e magnéticos. No caso gravimétrico, utilizamos uma anomalia situada no estado da Bahia, que se supõe ser causada por um batólito de granito. Com base nos resultados, sugerimos que as massas graníticas geradoras desta anomalia tenham sido estiradas na direção NNW e adelgaçadas na direção vertical durante o evento compressivo que causou a orogênese do Sistema de Dobramentos do Espinhaço. Além disso, estimamos que a profundidade do centro de massa da fonte geradora é cerca de 20 km. No caso magnético, utilizamos a anomalia de um monte submarino situado no Golfo da Guiné. Com base nos resultados, estimamos que o paleopolo magnético do monte submarino tem latitude 50°48'S e longitude 74°54'E e sugerimos que não exista contraste de magnetização expressivo abaixo da base do monte submarino.
Resumo:
Localizar em subsuperfície a região que mais influencia nas medidas obtidas na superfície da Terra é um problema de grande relevância em qualquer área da Geofísica. Neste trabalho, é feito um estudo sobre a localização dessa região, denominada aqui zona principal, para métodos eletromagnéticos no domínio da freqüência, utilizando-se como fonte uma linha de corrente na superfície de um semi-espaço condutor. No modelo estudado, tem-se, no interior desse semi-espaço, uma heterogeneidade na forma de camada infinita, ou de prisma com seção reta quadrada e comprimento infinito, na direção da linha de corrente. A diferença entre a medida obtida sobre o semi-espaço contendo a heterogeneidade e aquela obtida sobre o semi-espaço homogêneo, depende, entre outros parâmetros, da localização da heterogeneidade em relação ao sistema transmissor-receptor. Portanto, mantidos constantes os demais parâmetros, existirá uma posição da heterogeneidade em que sua influência é máxima nas medidas obtidas. Como esta posição é dependente do contraste de condutividade, das dimensões da heterogeneidade e da freqüência da corrente no transmissor, fica caracterizada uma região e não apenas uma única posição em que a heterogeneidade produzirá a máxima influência nas medidas. Esta região foi denominada zona principal. Identificada a zona principal, torna-se possível localizar com precisão os corpos que, em subsuperfície, provocam as anomalias observadas. Trata-se geralmente de corpos condutores de interesse para algum fim determinado. A localização desses corpos na prospecção, além de facilitar a exploração, reduz os custos de produção. Para localizar a zona principal, foi definida uma função Detetabilidade (∆), capaz de medir a influência da heterogeneidade nas medidas. A função ∆ foi calculada para amplitude e fase das componentes tangencial (Hx) e normal (Hz) à superfície terrestre do campo magnético medido no receptor. Estudando os extremos da função ∆ sob variações de condutividade, tamanho e profundidade da heterogeneidade, em modelos unidimensionais e bidimensionais, foram obtidas as dimensões da zona principal, tanto lateralmente como em profundidade. Os campos eletromagnéticos em modelos unidimensionais foram obtidos de uma forma híbrida, resolvendo numericamente as integrais obtidas da formulação analítica. Para modelos bidimensionais, a solução foi obtida através da técnica de elementos finitos. Os valores máximos da função ∆, calculada para amplitude de Hx, mostraram-se os mais indicados para localizar a zona principal. A localização feita através desta grandeza apresentou-se mais estável do que através das demais, sob variação das propriedades físicas e dimensões geométricas, tanto dos modelos unidimensionais como dos bidimensionais. No caso da heterogeneidade condutora ser uma camada horizontal infinita (caso 1D), a profundidade do plano central dessa camada vem dada pela relação po = 0,17 δo, onde po é essa profundidade e δo o "skin depth" da onda plana (em um meio homogêneo de condutividade igual à do meio encaixante (σ1) e a freqüência dada pelo valor de w em que ocorre o máximo de ∆ calculada para a amplitude de Hx). No caso de uma heterogeneidade bidimensional (caso 2D), as coordenadas do eixo central da zona principal vem dadas por do = 0,77 r0 (sendo do a distância horizontal do eixo à fonte transmissora) e po = 0,36 δo (sendo po a profundidade do eixo central da zona principal), onde r0 é a distância transmissor-receptor e δo o "skin depth" da onda plana, nas mesmas condições já estipuladas no caso 1D. Conhecendo-se os valores de r0 e δo para os quais ocorre o máximo de ∆, calculado para a amplitude de Hx, pode-se determinar (do, po). Para localizar a zona principal (ou, equivalentemente, uma zona condutora anômala em subsuperfície), sugere-se um método que consiste em associar cada valor da função ∆ da amplitude de Hx a um ponto (d, p), gerado através das relações d = 0,77 r e p = 0,36 δ, para cada w, em todo o espectro de freqüências das medidas, em um dado conjunto de configurações transmissor-receptor. São, então, traçadas curvas de contorno com os isovalores de ∆ que vão convergir, na medida em que o valor de ∆ se aproxima do máximo, sobre a localização e as dimensões geométricas aproximadas da heterogeneidade (zona principal).