948 resultados para Finite Difference
Resumo:
A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.
Resumo:
We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.
Resumo:
In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature.© 2010 IEEE.
Resumo:
Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.
Resumo:
In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.
Resumo:
The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.
Resumo:
EQUILATERAL-TRIANGLE; MU-M; LASERS; MICROLASERS; MICRODISK Abstract: Mode characteristics for midinfrared microsquare resonators with sloped sidewalls and confined metal layers are investigated by finite-difference time-domain (FDTD) techniques. For a microsquare with a side length of 10 mu m, the mode quality (Q)-factors of 8329, 4772, and 2053 are obtained for TM5,7 mode at wavelength 7.1 mu m by three-dimensional FDTD simulations, as the tilting angles of the side walls are 90 degrees, 88 degrees, and 86 degrees, respectively. Furthermore, microsquare resonators laterally surrounded by SiO2 and metal layers are investigated by the two-dimensional FDTD technique for the metal layers of Au, Ti-Au, Ag-Au, and Ti-Ag-Au, respectively.
Resumo:
Directional emission InP/AlGaInAs square-resonator microlasers with a side length of 20 mu m are fabricated by standard photolithography and inductively coupled-plasma etching technique. Multimode resonances with about seven distinct mode peaks in a free-spectral range are observed from 1460 to 1560 nm with the free-spectral range of 12.1 nm near the wavelength of 1510 nm, and the mode refractive index versus the photon energy E (eV) as 3.07152+0.18304E are obtained by fitting the laser spectra with an analytical mode wavelength formula derived by light ray method. In addition, mode field pattern is simulated for cold cavity by two dimensional finite-difference time-domain technique.
Resumo:
Microsquare resonators laterally confined by SiO2/Au/air multilayer structure are investigated by light ray method with reflection phase-shift of the multiple layers and two-dimensional (2-D) finite-difference time-domain (FDTD) technique. The reflectivity and phase shift of the mode light ray on the sides of the square resonator with the semiconductor/SiO2/Au/air multilayer structure are calculated for TE and TM modes by transfer matrix method. Based on the reflection phase shift and the reflectivity, the mode wavelength and factor are calculated by the resonant condition and the mirror loss, which are in agreement well with that obtained by the FDTD simulation. We find that the mode factor increases greatly with the increase of the SiO2 layer thickness, especially as d < 0.3 mu m. For the square resonator with side length 2 mu m and refractive index 3.2, anticrossing mode couplings are found for confined TE modes at wavelength about 1.6 mu m at d = 0.11 mu m, and confined TM modes at d = 0.71 mu m, respectively.
Resumo:
We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 mu m. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.
Resumo:
Mode radiation loss for microdisk resonators with pedestals is investigated by three-dimensional (3D) finite-difference time-domain (FDTD) technique. For the microdisk with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, on a pedestal with a refractive index of 3.17, the mode quality (Q) factor of the whispering-gallery mode (WGM) quasi-TE7,1 first increases with the increase of the radius of the pedestal, and then quickly decreases as the radius is larger than 0.75 mu m. The mode radiation loss is mainly the vertical radiation loss induced by the mode coupling between the WGM and vertical radiation mode in the pedestal, instead of the scattering loss around the perimeter of the round pedestal. The WG M can keep the high Q factor when the mode coupling is forbidden.
Resumo:
The enhancement of quality factor for TE whispering-gallery modes is analyzed for three-dimensional microcylinder resonators based on the destructive interference between vertical leakage modes. In the microcylinder resonator, the TE whispering-gallery modes can couple with vertical propagation modes, which results in vertical radiation loss and low quality factors. However, the vertical loss can be canceled by choosing appropriate thickness of the upper cladding layer or radius of the microcylinder. A mode quality factor increase by three orders of magnitude is predicted by finite-difference time-domain simulation. Furthermore, the condition of vertical leakage cancellation is analyzed.
Resumo:
Mode characteristics of a square microcavity with an output waveguide on the middle of one side, laterally confined by an insulating layer SiO2 and a p-electrode metal Au, are investigated by two-dimensional finite-difference time-domain technique. The mode quality (Q) factors versus the width of the output waveguide are calculated for Fabry-Peacuterot type and whispering-gallery type modes in the square cavity. Mode coupling between the confined modes in the square cavity and the guided modes in the output waveguide determines the mode Q factors, which is greatly influenced by the symmetry behaviors of the modes. Fabry-Peacuterot type modes can also have high Q factors due to the high reflectivity of the Au layer for the vertical incident mode light rays. For the square cavity with side length 4 mu m and refractive index 3.2, the mode Q factors of the Fabry-Peacuterot type modes can reach 10(4) at the mode wavelength of 1.5 mu m as the output waveguide width is 0.4 mu m.
Resumo:
Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.