823 resultados para Feature Documentary
Resumo:
This article extends the traditions of style-based criticism through an encounter with the insights that can be gained from engaging with filmmakers at work. By bringing into relationship two things normally thought of as separate: production history and disinterested critical analysis, the discussion aims to extend the subjects which criticism can appreciate as well as providing some insights on the creative process. Drawing on close analysis, on observations made during fieldwork and on access to earlier cuts of the film, this article looks at a range of interrelated decision-making anchored by the reading of a particular sequence. The article examines changes the film underwent in the different stages of production, and some of the inventions deployed to ensure key themes and ideas remained in play, as other elements changed. It draws conclusions which reveal perspectives on the filmmaking process, on collaboration, and on the creative response to material realities. The article reveals elements of the complexity of the process of the construction of image and soundtrack, and extends the range of filmmakers’ choices which are part of a critical dialogue. Has a relationship to ‘Sleeping with half open eyes: dreams and realities in The Cry of the Owl’, Movie: A Journal of Film Criticism, 1, (2010) which provides a broader interpretative context for the enquiry.
Resumo:
Technology Acceptance Model (TAM) posits that Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) influence the ‘intention to use’. The Post-Acceptance Model (PAM) posits that continued use is influenced by prior experience. In order to study the factors that influence how professionals use complex systems, we create a tentative research model that builds on PAM and TAM. Specifically we include PEOU and the construct ‘Professional Association Guidance’. We postulate that feature usage is enhanced when professional associations influence PU by highlighting additional benefits. We explore the theory in the context of post-adoption use of Electronic Medical Records (EMRs) by primary care physicians in Ontario. The methodology can be extended to other professional environments and we suggest directions for future research.
Resumo:
This paper explores the development of multi-feature classification techniques used to identify tremor-related characteristics in the Parkinsonian patient. Local field potentials were recorded from the subthalamic nucleus and the globus pallidus internus of eight Parkinsonian patients through the implanted electrodes of a Deep brain stimulation (DBS) device prior to device internalization. A range of signal processing techniques were evaluated with respect to their tremor detection capability and used as inputs in a multi-feature neural network classifier to identify the activity of Parkinsonian tremor. The results of this study show that a trained multi-feature neural network is able, under certain conditions, to achieve excellent detection accuracy on patients unseen during training. Overall the tremor detection accuracy was mixed, although an accuracy of over 86% was achieved in four out of the eight patients.
Resumo:
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.
Resumo:
Introduction. Feature usage is a pre-requisite to realising the benefits of investments in feature rich systems. We propose that conceptualising the dependent variable 'system use' as 'level of use' and specifying it as a formative construct has greater value for measuring the post-adoption use of feature rich systems. We then validate the content of the construct as a first step in developing a research instrument to measure it. The context of our study is the post-adoption use of electronic medical records (EMR) by primary care physicians. Method. Initially, a literature review of the empirical context defines the scope based on prior studies. Having identified core features from the literature, they are further refined with the help of experts in a consensus seeking process that follows the Delphi technique. Results.The methodology was successfully applied to EMRs, which were selected as an example of feature rich systems. A review of EMR usage and regulatory standards provided the feature input for the first round of the Delphi process. A panel of experts then reached consensus after four rounds, identifying ten task-based features that would be indicators of level of use. Conclusions. To study why some users deploy more advanced features than others, theories of post-adoption require a rich formative dependent variable that measures level of use. We have demonstrated that a context sensitive literature review followed by refinement through a consensus seeking process is a suitable methodology to validate the content of this dependent variable. This is the first step of instrument development prior to statistical confirmation with a larger sample.
Resumo:
This article analyses how listening is used to develop performances in Alecky Blythe’s verbatim theatre. Listening includes Blythe’s use of recorded oral interviews for devising performances, and also the actors’ creation of performance by precisely imitating an interviewee’s voice. The article focuses on listening, speaking and embodiment in London Road, Blythe’s recent musical play at London’s National Theatre, which adopted and modified theatre strategies used in her other plays, especially The Girlfriend Experience and Do We look Like Refugees. The article draws on interviews with performers and with Blythe herself, in its critical analysis of how voice legitimates claims to authenticity in performance. The work on Blythe is contextualised by brief comparative analyses. One is Clio Barnard’s film The Arbor, a ‘quasi-documentary’ on the playwright, Andrea Dunbar which makes use of an oral script to which the actors lip-sync. The other comparator is the Wooster Group’s Poor Theater, which attempts to recreate Grotowski's Akropolis via vocal impersonation. The article argues that voice in London Road both claims and defers authenticity and authority, inasmuch as voice signifies presence and embodied identity but the reworking of speech into song signals the absence of the real. The translation of voice into written surtitles works similarly in Do We Look Like Refugees. Blythe’s theatre, Barnard’s film and The Wooster Group’s performances are a useful framework for addressing questions of voice and identity, and authenticity and replication in documentary theatre. The article concludes by placing Blythe’s oral texts amid current debates around theatre’s textual practices.
Resumo:
Kinship terms in papyrus letters do not always refer to actual relatives and so pose many problems for modern readers. But by examining all the kinship terms in six centuries of letters it is possible to discover some rules governing the use of kinship terms: in some situations they appear to be always literal, and in others they appear to be almost always extended, though a third group of contexts remains ambiguous. The rules are complex and depend on the particular kinship term involved, the date of writing, the use of names, the position of the kinship term in the letter, and the person to whom it connects the referent.
Resumo:
Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis. The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly ) show important differences. One analysis tends to reproduce small-scale features more accurately when the high-resolution data coverage is good but produces more spurious small-scale noise when the high-resolution data coverage is poor. Analysis procedures can thus generate small-scale features with and without data, but the small-scale features in an SST analysis may be just noise when high-resolution data are sparse. Users must therefore be skeptical of high-resolution SST products, especially in regions where high-resolution (~5 km) infrared satellite data are limited because of cloud cover.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.
Resumo:
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.
Resumo:
Fractal with microscopic anisotropy shows a unique type of macroscopic isotropy restoration phenomenon that is absent in Euclidean space [M. T. Barlow et al., Phys. Rev. Lett. 75, 3042]. In this paper the isotropy restoration feature is considered for a family of two-dimensional Sierpinski gasket type fractal resistor networks. A parameter xi is introduced to describe this phenomenon. Our numerical results show that xi satisfies the scaling law xi similar to l(-alpha), where l is the system size and alpha is an exponent independent of the degree of microscopic anisotropy, characterizing the isotropy restoration feature of the fractal systems. By changing the underlying fractal structure towards the Euclidean triangular lattice through increasing the side length b of the gasket generators, the fractal-to-Euclidean crossover behavior of the isotropy restoration feature is discussed.