993 resultados para FOLDED-GASTRULATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salivary gland cells in the larvae of the dipteran Chironomus tentans offer unique possibilities to visualize the assembly and nucleocytoplasmic transport of a specific transcription product. Each nucleus harbors four giant polytene chromosomes, whose transcription sites are expanded, or puffed. On chromosome IV, there are two puffs of exceptional size, Balbiani ring (BR) 1 and BR 2. A BR gene is 35–40 kb, contains four short introns, and encodes a 1-MDa salivary polypeptide. The BR transcript is packed with proteins into a ribonucleoprotein (RNP) fibril that is folded into a compact ring-like structure. The completed RNP particle is released into the nucleoplasm and transported to the nuclear pore, where the RNP fibril is gradually unfolded and passes through the pore. On the cytoplasmic side, the exiting extended RNP fibril becomes engaged in protein synthesis and the ensuing polysome is anchored to the endoplasmic reticulum. Several of the BR particle proteins have been characterized, and their fate during the assembly and transport of the BR particle has been elucidated. The proteins studied are all added cotranscriptionally to the pre-mRNA molecule. The various proteins behave differently during RNA transport, and the flow pattern of each protein is related to the particular function of the protein. Because the cotranscriptional assembly of the pre-mRNP particle involves proteins functioning in the nucleus as well as proteins functioning in the cytoplasm, it is concluded that the fate of the mRNA molecule is determined to a considerable extent already at the gene level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9 peptides to determine the relationship between elicitor activity of these peptides and their affinity to the binding site in the membranes of tomato. Mutant AVR9 peptides were purified from tobacco (Nicotiana clevelandii) inoculated with recombinant potato virus X expressing the corresponding avirulence gene Avr9. In addition, several AVR9 peptides were synthesized chemically. Physicochemical techniques revealed that the peptides were correctly folded. Most mutant AVR9 peptides purified from potato virus X::Avr9-infected tobacco contain a single N-acetylglucosamine. These glycosylated AVR9 peptides showed a lower affinity to the binding site than the nonglycosylated AVR9 peptides, whereas their necrosis-inducing activity was hardly changed. For both the nonglycosylated and the glycosylated mutant AVR9 peptides, a positive correlation between their affinity to the membrane-localized binding site and their necrosis-inducing activity in MoneyMaker-Cf9 tomato was found. The perception of AVR9 in resistant and susceptible plants is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt c′ confirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In zebrafish, the organizer is thought to consist of two regions, the yolk syncytial layer (YSL) and the shield. The dorsal YSL appears to send signals that affect formation of the shield in the overlying mesendoderm. We show here that a domain of dorsal deep cells located between the YSL and the shield is marked by expression of the iro3 gene. As gastrulation proceeds, the iro3 positive domain involutes and migrates to the animal pole. Iro3 expression is regulated by Nodal and bone morphogenic protein antagonists. Overexpression of iro3 induced ectopic expression of shield-specific genes. This effect was mimicked by an Iro3-Engrailed transcriptional repressor domain fusion, whereas an Iro3-VP16 activator domain fusion behaved as a dominant negative or antimorphic form. These results suggest that Iro3 acts as a transcriptional repressor and further implicate the iro3 gene in regulating organizer formation. We propose that the iro3-expressing dorsal deep cells represent a distinct organizer domain that receives signals from the YSL and in turn sends signals to the forming shield, thereby influencing its expansion and differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extraembryonic ectoderm-derived factors instruct the pluripotent epiblast cells to develop toward a restricted primordial germ cell (PGC) fate during murine gastrulation. Genes encoding Bmp4 of the Dpp class and Bmp8b of the 60A class are expressed in the extraembryonic ectoderm and targeted mutation of either results in severe defects in PGC formation. It has been shown that heterodimers of DPP and 60A classes of bone morphogenetic proteins (BMPs) are more potent than each homodimers in bone and mesoderm induction in vitro, suggesting that BMP4 and BMP8B may form heterodimers to induce PGCs. To investigate how BMP4 and BMP8B interact and signal for PGC induction, we cocultured epiblasts of embryonic day 6.0–6.25 embryos with BMP4 and BMP8B proteins produced by COS cells. Our data show that BMP4 or BMP8B homodimers alone cannot induce PGCs whereas they can in combination, providing evidence that two BMP pathways are simultaneously required for the generation of a given cell type in mammals and also providing a prototype method for PGC induction in vitro. Furthermore, the PGC defects of Bmp8b mutants can be rescued by BMP8B homodimers whereas BMP4 homodimers cannot mitigate the PGC defects of Bmp4 null mutants, suggesting that BMP4 proteins are also required for epiblast cells to gain germ-line competency before the synergistic action of BMP4 and BMP8B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the LEF-1/TCF family of transcription factors have been implicated in mediating a nuclear response to Wnt signals by association with β-catenin. Consistent with this view, mice carrying mutations in either the Wnt3a gene or in both transcription factor genes Lef1 and Tcf1 were previously found to show a similar defect in the formation of paraxial mesoderm in the gastrulating mouse embryo. In addition, mutations in the Brachyury gene, a direct transcriptional target of LEF-1, were shown to result in mesodermal defects. However, direct evidence for the role of LEF-1 and Brachyury in Wnt3a signaling has been limiting. In this study, we genetically examine the function of LEF-1 in the regulation of Brachyury expression and in signaling by Wnt3a. Analysis of the expression of Brachyury in Lef1−/−Tcf1−/− mice and studies of Brachyury:lacZ transgenes containing wild type or mutated LEF-1 binding sites indicate that Lef1 is dispensable for the initiation, but is required for the maintenance of Brachyury expression. We also show that the expression of an activated form of LEF-1, containing the β-catenin activation domain fused to the amino terminus of LEF-1, can rescue a Wnt3a mutation. Together, these data provide genetic evidence that Lef1 mediates the Wnt3a signal and regulates the stable maintenance of Brachyury expression during gastrulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaperonins prevent the aggregation of partially folded or misfolded forms of a protein and, thus, keep it competent for productive folding. It was suggested that GroEL, the chaperonin of Escherichia coli, exerts this function 1 unfolding such intermediates, presumably in a catalytic fashion. We investigated the kinetic mechanism of GroEL-induced protein unfolding by using a reduced and carbamidomethylated variant of RNase T1, RCAM-T1, as a substrate. RCAM-T1 cannot fold to completion, because the two disulfide bonds are missing, and it is, thus, a good model for long-lived folding intermediates. RCAM-T1 unfolds when GroEL is added, but GroEL does not change the microscopic rate constant of unfolding, ruling out that it catalyzes unfolding. GroEL unfolds RCAM-T1 because it binds with high affinity to the unfolded form of the protein and thereby shifts the overall equilibrium toward the unfolded state. GroEL can unfold a partially folded or misfolded intermediate by this thermodynamic coupling mechanism when the Gibbs free energy of the binding to GroEL is larger than the conformational stability of the intermediate and when the rate of its unfolding is high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal mesoderm movement, leading to defects in axial organization, is observed in mouse and Xenopus laevis embryos deprived of platelet-derived growth factor (PDGF) AA signaling. However, neither the cellular response to PDGF nor the signaling pathways involved are understood. Herein we describe an in vitro assay to examine the direct effect of PDGF AA on aggregates of Xenopus embryonic mesoderm cells. We find that PDGF AA stimulates aggregates to spread on fibronectin. This behavior is similar to that of migrating mesoderm cells in vivo that spread and form lamellipodia and filipodia on contact with fibronectin-rich extracellular matrix. We go on to show two lines of evidence that implicate phosphatidylinositol 3-kinase (PI3K) as an important component of PDGF-induced mesoderm cell spreading. (i) The fungal metabolite wortmannin, which inhibits signaling by PI3K, blocks mesoderm spreading in response to PDGF AA. (ii) Activation of a series of receptors with specific tyrosine-to-phenylalanine mutations revealed PDGF-induced spreading of mesoderm cells depends on PI3K but not on other signaling molecules that interact with PDGF receptors including phospholipase C gamma, Ras GTPase-activating protein, and phosphotyrosine phosphatase SHPTP2. These results indicate that a PDGF signal, medicated by PI3K, can facilitate embryonic mesoderm cell spreading on fibronectin. We propose that PDGF, produced by the ectoderm, influences the adhesive properties of the adjacent mesoderm cells during gastrulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that recombination and shuffling between exons has been a key feature in the evolution of proteins. We propose that this strategy could also be used for the artificial evolution of proteins in bacteria. As a first step, we illustrate the use of a self-splicing group I intron with inserted lox-Cre recombination site to assemble a very large combinatorial repertoire (> 10(11) members) of peptides from two different exons. Each exon comprised a repertoire of 10 random amino acids residues; after splicing, the repertoires were joined together through a central five-residue spacer to give a combinatorial repertoire of 25-residue peptides. The repertoire was displayed on filamentous bacteriophage by fusion to the pIII phage coat protein and selected by binding to several proteins, including beta-glucuronidase. One of the peptides selected against beta-glucuronidase was chemically synthesized and shown to inhibit the enzymatic activity (inhibition constant: 17 nM); by further exon shuffling, an improved inhibitor was isolated (inhibition constant: 7 nM). Not only does this approach provide the means for making very large peptide repertoires, but we anticipate that by introducing constraints in the sequences of the peptides and of the linker, it may be possible to evolve small folded peptides and proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunity protein of colicin E7 (ImmE7) can bind specifically to the DNase-type colicin E7 and inhibit its bactericidal activity. Here we report the 1.8-angstrom crystal structure of the ImmE7 protein. This is the first x-ray structure determined in the superfamily of colicin immunity proteins. The ImmE7 protein consists of four antiparallel alpha-helices, folded in a topology similar to the architecture of a four-helix bundle structure. A region rich in acidic residues is identified. This negatively charged area has the greatest variability within the family of DNase-type immunity proteins; thus, it seems likely that this area is involved in specific binding to colicin. Based on structural, genetic, and kinetic data, we suggest that all the DNase-type immunity proteins, as well as colicins, share a "homologous-structural framework" and that specific interaction between a colicin and its cognate immunity protein relies upon how well these two proteins' charged residues match on the interaction surface, thus leading to specific immunity of the colicin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SecY protein of Escherichia coli is an integral membrane component of the protein export apparatus. Suppressor mutations in the secY gene (prlA alleles) have been isolated that restore the secretion of precursor proteins with defective signal sequences. These mutations have never been shown to affect the translocation of wild-type precursor proteins. Here, we report that prlA suppressor mutations relieve the proton-motive force (pmf) dependency of the translocation of wild-type precursors, both in vivo and in vitro. Furthermore, the proton-motive force dependency of the translocation of a precursor with a stably folded domain in the mature region was suppressed by prlA mutations in vitro. These data show that prlA mutations cause a general relaxation of the export apparatus rather than a specific change that results in bypassing of the recognition of the signal sequence. In addition, these results are indicative for a mechanism in which the proton-motive force stimulates translocation by altering the conformation of the translocon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A group of resident ER proteins have been identified that are proposed to function as molecular chaperones. The best characterized of these is BiP/GRP78, an hsp70 homologue that binds peptides containing hydrophobic residues in vitro and unfolded or unassembled proteins in vivo. However, evidence that mammalian BiP plays a direct role in protein folding remains circumstantial. In this study, we examine how BiP interacts with a particular substrate, immunoglobulin light chain (lambda LC), during its folding. Wild-type hamster BiP and several well-characterized BiP ATPase mutants were used in transient expression experiments. We demonstrate that wild-type lambda LCs showed prolonged association with mutant BiP which inhibited their secretion. Both wild-type and mutant BiP bound only to unfolded and partially folded LCs. The wild-type BiP was released from the incompletely folded LCs, allowing them to fold and be secreted, whereas the mutant BiP was not released. As a result, the LCs that were bound to BiP mutants were unable to undergo complete disulfide bond formation and were retained in the ER. Our experiments suggest that LCs undergo both BiP-dependent and BiP-independent folding steps, demonstrating that both ATP binding and hydrolysis activities of BiP are essential for the completion of LC folding in vivo and reveal that BiP must release before disulfide bond formation can occur in that domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DG42 is one of the main mRNAs expressed during gastrulation in embryos of Xenopus laevis. Here we demonstrate that cells expressing this mRNA synthesize hyaluronan. The cloned DG42 cDNA was expressed in rabbit kidney (RK13) and human osteosarcoma (tk-) cells using a vaccinia virus system. Lysates prepared from infected cells were incubated in the presence of UDP-N-acetylglucosamine and UDP-[14C]glucuronic acid. This yielded a glycosaminoglycan with a molecular mass of about 200,000 Da. Formation of this product was only observed in the presence of both substrates. The glycosaminoglycan could be digested with testicular hyaluronidase and with Streptomyces hyaluronate lyase but not with Serratia chitinase. Hyaluronan synthase activity could also be detected in homogenates of early Xenopus embryos, and the activity was found to correlate with the expression of DG42 mRNA at different stages of development. Synthesis of hyaluronan is thus an early event after midblastula transition, indicating its importance for the ensuing cell movements in the developing embryo. Our results are at variance with a recent report (Semino, C. E. & Robbins, P. W. (1995) Proc. Natl. Acad. Sci. USA 92, 3498-3501) that DG42 codes for an enzyme that catalyzes the synthesis of chitin-like oligosaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rhodopsin mutants P23H and G188R, identified in autosomal dominant retinitis pigmentosa (ADRP), and the site-specific mutants D190A and DeltaY191-Y192 were expressed in COS cells from synthetic mutant opsin genes containing these mutations. The proteins expressed from P23H and D190A partially regenerated the rhodopsin chromophore with 11-cis-retinal and were mixtures of the correctly folded (retinal-binding) and misfolded (non-retinal-binding) opsins. The mixtures were separated into pure, correctly folded mutant rhodopsins and misfolded opsins. The proteins expressed from the ADRP mutant G188R and the mutant DeltaY191-Y192 were composed of totally misfolded non-retinal-binding opsins. Far-UV CD spectra showed that the correctly folded mutant rhodopsins had helical content similar to that of the wild-type rhodopsin, whereas the misfolded opsins had helical content 50-70% of the wild type. The near-UV CD spectra of the misfolded mutant proteins lack the characteristic band pattern seen in the wild-type opsin, indicative of a different tertiary structure. Further, whereas the folded mutant rhodopsins were essentially resistant to trypsin digestion, the misfolded opsins were degraded to small fragments under the same conditions. Therefore, the misfolded opsins appear to be less compact in their structures than the correctly folded forms. We suggest that most, if not all, of the point mutations in the intradiscal domain identified in ADRP cause partial or complete misfolding of rhodopsin.