995 resultados para Extended Peptide Conformation
Resumo:
It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.
Resumo:
Patients with stage I-III melanoma were vaccinated with the modified HLA-A2-binding gp100(209-2M)-peptide after complete surgical resection of their primary lesion and sentinel node biopsy. Cytoplasmic interferon-gamma production by freshly thawed peripheral blood mononuclear cells (direct ex vivo analysis) or by peripheral blood mononuclear cells subjected to 1 cycle of in vitro sensitization with peptide, interleukin-2, and interleukin-15 was measured following restimulation with the modified and native gp100 peptides, and also A2gp100 melanoma cell lines. Peptide-reactive and tumor-reactive T cells were detected in 79% and 66% of selected patients, respectively. Patients could be classified into 3 groups according to their vaccine-elicited T-cell responses. One group of patients responded only to the modified peptide used for immunization, whereas another group of patients reacted to both the modified and native gp100 peptides, but not to naturally processed gp100 antigen on melanoma cells. In the third group of patients, circulating CD8 T cells recognized A2gp100 melanoma cell lines and also both the modified and native peptides. T cells with a low functional avidity, which were capable of lysing tumor cells only if tumor cells were first pulsed by the exogenous administration of native gp100(209-217) peptide were identified in most patients. These results indicate that vaccination with a modified gp100 peptide induced a heterogeneous group of gp100-specific T cells with a spectrum of functional avidities; however, high avidity, tumor-reactive T cells were detected in the majority of patients.
Resumo:
Atrial natriuretic peptides (ANP) exert vasodilating and natriuretic actions. The present study was undertaken to test the effect of low dose infusions of synthetic ANP on hemodynamic and humoral variables of patients with severe heart failure. Eight patients, aged 26 to 71 years, with severe congestive heart failure due to ischemic heart disease or idiopathic dilated cardiomyopathy were included in the study. Synthetic human (3-28) ANP was infused at doses ranging from 0.5 to 2 micrograms/min for up to 3 h. Pulmonary capillary wedge pressure fell from 24 +/- 1 to 16 +/- 2 mm Hg (mean +/- SEM) (p less than 0.01) and cardiac index tended to rise from 2 +/- 0.2 to 2.3 +/- 0.2 L/min/m2 (NS), while blood pressure and heart rate did not change. One patient experienced a marked drop in pulmonary capillary wedge and arterial blood pressure that necessitated the administration of saline. ANP infusion did not alter plasma renin activity or plasma aldosterone, norepinephrine, or vasopressin levels. It decreased plasma epinephrine levels from 0.472 +/- 0.077 to 0.267 +/- 0.024 nmol/L (p less than 0.05). Plasma ANP levels were markedly elevated in all patients before initiating the infusion. They had no predictive value for the hemodynamic response to exogenous ANP. No correlation was observed between the hemodynamic effects of ANP and those induced by the subsequently administered converting enzyme inhibitor captopril, which seemed to improve cardiac function more consistently.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Natural killer T (NKT) cells are a subset of mature alpha beta TCR(+) cells that co-express NK lineage markers. Whereas most NKT cells express a canonical Valpha14/Vbeta8.2 TCR and are selected by CD1d, a minority of NKT cells express a diverse TCR repertoire and develop independently of CD1d. Little is known about the selection requirements of CD1d-independent NKT cells. We show here that NKT cells develop in RAG-deficient mice expressing an MHC class II-restricted transgenic TCR (Valpha2/Vbeta8.1) but only under conditions that lead to negative selection of conventional T cells. Moreover development of NKT cells in these mice is absolutely dependent upon an intact TCR alpha-chain connecting peptide domain, which is required for positive selection of conventional T cells via recruitment of the ERK signaling pathway. Collectively our data demonstrate that NKT cells can develop as a result of high avidity TCR/MHC class II interactions and suggest that common signaling pathways are involved in the positive selection of CD1d-independent NKT cells and conventional T cells.
Resumo:
Glucagon-like peptide 1 (GLP-1) is a hormone derived from the preproglucagon molecule and is secreted by intestinal L cells. It is the most potent stimulator of glucose-induced insulin secretion and also suppresses in vivo acid secretion by gastric glands. A cDNA for the GLP-1 receptor was isolated by transient expression of a rat pancreatic islet cDNA library into COS cells; this was followed by binding of radiolabeled GLP-1 and screening by photographic emulsion autoradiography. The receptor transfected into COS cells binds GLP-1 with high affinity and is coupled to activation of adenylate cyclase. The receptor binds specifically GLP-1 and does not bind peptides of related structure and similar function, such as glucagon, gastric inhibitory peptide, vasoactive intestinal peptide, or secretin. The receptor is 463 amino acids long and contains seven transmembrane domains. Sequence homology is found only with the receptors for secretin, calcitonin, and parathyroid hormone, which form a newly characterized family of G-coupled receptors.
Resumo:
Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.
Resumo:
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Resumo:
Purpose: Retinal stem cells (RSCs) can be isolated from radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have great capacity to renew and generate neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, our published results showed poor integration and survival rate after cell grafting into the retina. The uncontrollable environment of retina seems to be the problem. To bypass this, we are trying to generate hemi-retinal tissue in vitro that can be used for transplantation. Methods: Expanded RSCs were seeded in a mixture of poly-ethylene-glycol (PEG)-polymer-based hydrogels crosslinked by peptides that also serve as substrates for matrix metalloproteinases. Different doses of crosslinker peptides were tested. Several growth factors were studied to stimulate cell proliferation and differentiation. Results: Cells were trapped in hydrogels and cultured in the presence of FGF2 and EGF. Spherical cell clusters indicating proliferation appeared within several days, but there was no cell migration within the gel. We then added cell adhesion molecules integrin ligand RGDSP, or laminin, or a combination of both, into the gel. Cells grown with laminin showed the best proliferation. Cells grown with RGDSP proliferated a few times and then started to spread out. Cells grown with the combination of RGDSP and laminin showed better proliferation than with RGDSP alone and larger spread-outs than with laminin alone. After stimulations with first FGF2 and EGF, and then only FGF2, some cells showed neuronal morphology after 2 weeks. The neuronal population was assessed by the presence of neuronal marker b-tubulin-III. Glial cells were also present. Further characterizations are undergoing. Conclusions: RSC can grow and migrate in 3D hydrogel with the addition of FGF2, EGF, RGDSP and laminin. Further developments are necessary to form a homogenous tissue containing retinal cells.
Resumo:
To combine the advantage of both the tumor targeting capacity of high affinity monoclonal antibodies (mAbs) and the potent killing properties of cytotoxic T lymphocytes (CTL), we investigated the activity of conjugates made by coupling single Fab' fragments, from mAbs specific for tumor cell surface antigens, to monomeric HLA-A2 complexes containing the immunodominant influenza-matrix peptide 58-66. In solution, the monovalent 95 kDa Fab-HLA-A2/Flu conjugates did not activate influenza-specific CTL. However, when targeted to tumor cells expressing the relevant tumor-associated antigen, the conjugates induced CTL activation and efficient tumor cell lysis, as a result of MHC/peptide surface oligomerization. The highly specific and sensitive in vitro cytotoxicity results presented suggest that injection of Fab-MHC/peptide conjugates could represent a new form of immunotherapy, bridging antibody and T lymphocyte attack on cancer cells.
Resumo:
Taking advantage of homeostatic mechanisms to boost tumor-specific cellular immunity is raising increasing interest in the development of therapeutic strategies in the treatment of melanoma. Here, we have explored the potential of combining homeostatic proliferation, after transient immunosuppression, and antigenic stimulation of Melan-A/Mart-1 specific CD8 T-cells. In an effort to develop protocols that could be readily applicable to the clinic, we have designed a phase I clinical trial, involving lymphodepleting chemotherapy with Busulfan and Fludarabine, reinfusion of Melan-A specific CD8 T-cell containing peripheral blood mononuclear cells (exempt of growth factors), and Melan-A peptide vaccination. Six patients with advanced melanoma were enrolled in this outpatient regimen that demonstrated good feasibility combined with low toxicity. Consistent depletion of lymphocytes with persistent increased CD4/CD8 ratios was induced, although the proportion of circulating CD4 regulatory T-cells remained mostly unchanged. The study of the immune reconstitution period showed a steady recovery of whole T-cell numbers overtime. However, expansion of Melan-A specific CD8 T-cells, as measured in peripheral blood, was mostly inconsistent, accompanied with marginal phenotypic changes, despite vaccination with Melan-A/Mart-1 peptide. On the clinical level, 1 patient presented a partial but objective antitumor response following the beginning of the protocol, even though a direct effect of Busulfan/Fludarabine cannot be completely ruled out. Overall, these data provide further ground for the development of immunotherapeutic approaches to be both effective against melanoma and applicable in clinic.
Resumo:
The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.
Resumo:
The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes.
Resumo:
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.
Resumo:
The low frequency of self-peptide-specific T cells in the human preimmune repertoire has so far precluded their direct evaluation. Here, we report an unexpected high frequency of T cells specific for the self-antigen Melan-A/MART-1 in CD8 single-positive thymocytes from human histocompatibility leukocyte antigen-A2 healthy individuals, which is maintained in the peripheral blood of newborns and adults. Postthymic replicative history of Melan-A/MART-1-specific CD8 T cells was independently assessed by quantifying T cell receptor excision circles and telomere length ex vivo. We provide direct evidence that the large T cell pool specific for the self-antigen Melan-A/MART-1 is mostly generated by thymic output of a high number of precursors. This represents the only known naive self-peptide-specific T cell repertoire directly accessible in humans.