955 resultados para Expectation-conditional Maximization (ecm)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reprise evidential conditional (REC) is nowadays not very usual in Catalan: it is restricted to journalistic language and to some very formal genres (such as academic or legal language), it is not present in spontaneous discourse. On the one hand, it has been described among the rather new modality values of the conditional. On the other, the normative tradition tended to reject it for being a gallicism, or to describe it as an unsuitable neologism. Thanks to the extraction from text corpora, we surprisingly find this REC in Catalan from the beginning of the fourteenth century to the contemporary age, with semantic and pragmatic nuances and different evidence of grammaticalization. Due to the current interest in evidentiality, the REC has been widely studied in French, Italian and Portuguese, focusing mainly on its contemporary uses and not so intensively on the diachronic process that could explain the origin of this value. In line with this research, that we initiated studying the epistemic and evidential future in Catalan, our aim is to describe: a) the pragmatic context that could have been the initial point of the REC in the thirteenth century, before we find indisputable attestations of this use; b) the path of semantic change followed by the conditional from a ‘future in the past’ tense to the acquisition of epistemic and evidential values; and c) the role played by invited inferences, subjectification and intersubjectification in this change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Engenharia Biomédica e Biofísica, Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voters try to avoid wasting their votes even in PR systems. In this paper we make a case that this type of strategic voting can be observed and predicted even in PR systems. Contrary to the literature we do not see weak institutional incentive structures as indicative of a hopeless endeavor for studying strategic voting. The crucial question for strategic voting is how institutional incentives constrain an individual’s decision-making process. Based on expected utility maximization we put forward a micro-logic of an individual’s expectation formation process driven by institutional and dispositional incentives. All well-known institutional incentives to vote strategically that get channelled through the district magnitude are moderated by dispositional factors in order to become relevant for voting decisions. Employing data from Finland – because of its electoral system a particularly hard testing ground - we find considerable evidence for observable implications of our theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis deals with determining of innovative projects "viability". "Viability" is the probability of innovative project being implemented. Hidden Markov Models are used for evaluation of this factor. The problem of determining parameters of model, which produce given data sequence with the highest probability, are solving in this research. Data about innovative projects contained in reports of Russian programs "UMNIK", "START" and additional data obtained during study are used as input data for determining of model parameters. The Baum-Welch algorithm which is one implementation of expectation-maximization algorithm is used at this research for calculating model parameters. At the end part of the master thesis mathematical basics for practical implementation are given (in particular mathematical description of the algorithm and implementation methods for Markov models).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chapter supplementary to the author's Choice and Chance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At head of title: Financial record.--Extra. (Wanting)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function. genesis 36:158-161, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.