929 resultados para Excited-state life time


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of life is to obtain knowledge, use it to live with as much satisfaction as possible, and pass it on with improvements and modifications to the next generation.'' This may sound philosophical, and the interpretation of words may be subjective, yet it is fairly clear that this is what all living organisms--from bacteria to human beings--do in their life time. Indeed, this can be adopted as the information theoretic definition of life. Over billions of years, biological evolution has experimented with a wide range of physical systems for acquiring, processing and communicating information. We are now in a position to make the principles behind these systems mathematically precise, and then extend them as far as laws of physics permit. Therein lies the future of computation, of ourselves, and of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a Raman study of single crystal pyrochlore Er(2)Ti(2)O(7) as a function of temperature from 12 to 300 K. In addition to the phonons, various photoluminescence (PL) lines of Er(3+) in the visible range are also observed. Our Raman data show an anomalous red-shift of two phonons (one at similar to 200 cm(-1) and another at similar to 520 cm(-1)) upon cooling from room temperature which is attributed to phonon-phonon anharmonic interactions. However, the phonons at similar to 310, 330, and 690 cm(-1) initially show a blue-shift upon cooling from room temperature down to about 130 K, followed by a red-shift, indicating a structural deformation at similar to 130 K. The intensities of the PL bands associated with the transitions between the various levels of the ground state manifold ((4)I(15/2)) and the (2)H(11/2) as well as (4)S(3/2) excited state manifolds of Er(3+) show a change at similar to 130 K. Moreover, the temperature dependence of the peak position of the two PL bands shows a change in their slope (d(omega)/d(T)) at similar to 130 K, thus further strengthening the proposal of a structural deformation. The temperature dependence of the peak positions of the PL bands has been analyzed using the theory of optical dephasing in crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absorption and emission spectra of two coumarins namely 7, 8 benzo-4-azidomethyl coumarin (C-1) and 6-methoxy-4-azidomethyl coumarin (C-2) have been recorded at room temperature in solvents of different polarities. The ground state dipole moments (mu(g)) of two coumarins were determined experimentally by Guggenheim method. The exited state (mu(e)) dipole moments were estimated from Lippert's, Bakhshievs and Chamma-Viallet's equations by using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The ground and excited state dipole moments were calculated by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was observed that dipole moments of excited state were higher than those of the ground state, indicating a substantial redistribution of the pi-electron densities in a more polar excited state for two coumarins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu3+ = 1, Tb3+ = 2, and Gd3+ = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {Eu(L)(3)(H2O)(2)]}(n) (1) and {Tb(L)(3)(H2O)]center dot(H2O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb3+ emission (Phi(overall) = 64%) thanks to the favorable position of the triplet state ((3)pi pi*) of the ligand the energy difference between the triplet state of the ligand and the excited state of Tb3+ (Delta E) = (3)pi pi* - D-5(4) = 3197 cm(-1)], as investigated in the Gd3+ complex. On the other hand, the corresponding Eu3+ complex shows weak luminescence efficiency (Phi(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (Delta E = (3)pi pi* - D-5(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu3+ and Tb3+ ions with the general formula {Eu0.5Tb0.5(L)(3)(H2O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb3+ and Eu3+ in a mixed lanthanide system (eta = 86%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting `green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policies are related to the throughput optimal policies. We also obtain the capacity when energy conserving sleep-wake modes are supported and an achievable rate for the system with inefficiencies in energy storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

8MeV electron irradiation effects on thioglycolic acid (TGA)-capped CdTe quantum dots (QD) are discussed in this study. CdTe QDs were characterized using x-ray diffraction (XRD), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). Steady-state and time-resolved emission spectroscopy and UV-visible absorption spectroscopy were performed before and after irradiation with 8MeV electrons. XRD and TEM confirm the growth of TGA-capped CdTe QDs. The photoemission wavelength, intensity and lifetimes were found to vary with electron dose. At lower doses, they were found to be increasing (red-shift of photoluminescence (PL) peak and intensity) while the intensity decreased at higher electron doses. The observed changes in PL property, XPS and XRD analysis suggest possible epitaxial growth of the CdS shell on the CdTe core. This work demonstrates electron beam induced formation of the CdS layer on the CdTe core, which is a key step towards growth of the water soluble CdTe/CdS core-shell structure for biomedical labelling applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the process of bound state formation in a D-brane collision. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and time scale for formation of a bound state agree at the correspondence point. The time scale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs) by the density matrix renormalization group (DMRG) technique. We employ the Pariser-Parr-Pople (PPP) Hamiltonian which includes long-range electron-electron interactions. We find that, in the 4n+2 EPs, there are two prominent low-lying one-photon excitations, while in 4n EPs, there is only one such excitation. We also find that 4n+2 EPs have large two-photon absorption cross sections compared to 4n EPs. The charge density rearrangement in the one-photon excited state is mostly at the pyrrole nitrogen site and at the meso carbon sites. In the two-photon states, the charge density rearrangement occurs mostly at the aza-ring sites. In the one-photon state, the C-C bond length in aza rings shows a tendency to become uniform. In the two-photon state, the bond distortions are on C-N bonds of the pyrrole ring and the adjoining C-C bonds which connect the pyrrole ring to the aza or meso carbon sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of explosives, especially trinitrotoluene (TNT), is of utmost importance due to its highly explosive nature and environmental hazard. Therefore, detection of TNT has been a matter of great concern to the scientific community worldwide. Herein, a new aggregation-induced phosphorescent emission (AIPE)-active iridium(III) bis(2-(2,4-difluorophenyl)pyridinato-NC2') (2-(2-pyridyl)benzimidazolato-N,N') complex FIrPyBiz] has been developed and serves as a molecular probe for the detection of TNT in the vapor phase, solid phase, and aqueous media. In addition, phosphorescent test strips have been constructed by impregnating Whatman filter paper with aggregates of FIrPyBiz for trace detection of TNT in contact mode, with detection limits in nanograms, by taking advantage of the excited state interaction of AIPE-active phosphorescent iridium(III) complex with that of TNT and the associated photophysical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new electron-rich metal-organic frameworks (MOF-1-MOF-3) have been synthesized by employing ligands bearing aromatic tags. The key role of the chosen aromatic tags is to enhance the -electron density of the luminescent MOFs. Single-crystal X-ray structures have revealed that these MOFs form three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These highly luminescent electron-rich MOFs have been successfully utilized for the detection of explosive nitroaromatic compounds (NACs) on the basis of fluorescence quenching. Although all of the prepared MOFs can serve as sensors for NACs, MOF-1 and MOF-2 exhibit superior sensitivity towards 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT) compared to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). MOF-3, on the other hand, shows an order of sensitivity in accordance with the electron deficiencies of the substrates. To understand such anomalous behavior, we have thoroughly analyzed both the steady-state and time-resolved fluorescence quenching associated with these interactions. Determination of static Stern-Volmer constants (K-S) as well as collisional constants (K-C) has revealed that MOF-1 and MOF-2 have higher K-S values with 4-NT than with TNT, whereas for MOF-3 the reverse order is observed. This apparently anomalous phenomenon was well corroborated by theoretical calculations. Moreover, recyclability and sensitivity studies have revealed that these MOFs can be reused several times and that their sensitivities towards TNT solution are at the parts per billion (ppb) level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the performance and photophysics of a low band-gap diketopyrrolopyrrole-based copolymer used in bulk heterojunction devices in combination with PC71BM. We show that the short lifetime of photogenerated excitons in the polymer constitutes an obstacle towards device efficiency by limiting the diffusion range of the exciton to the donor-acceptor heterojunction. We employ ultrafast transient-probe and fluorescence spectroscopy techniques to examine the excited state loss channels inside the devices. We use the high boiling point solvent additive 1,8-diiodooctane (DIO) to study the photoexcited state losses in different blend morphologies. The solvent additive acts as a compatibiliser between the donor and the acceptor material and leads to smaller domain sizes, higher charge formation yields and increased device efficiency.