989 resultados para Exchange reactions.
Resumo:
With a view to understanding the mechanism of the formation of 6-methoxy-2,2-(tetrachloro--phenylenedioxy)-naphthalen-1 (2H)-one (IIIa) in the reaction of 6-methoxy-1-tetralone (Ia) with tetrachloro-1,2-benzoquinone (II), the reaction of (II) with various tetralones and naphthols has been studied. Reaction with either α-tetralone or α-naphthol gives 2,2-(tetrachloro-o-phenylenedioxy)naphthalen-1 (2H)-one (IIIb), whereas reaction with either β-tetralone or β-naphthol gives a mixture of (IIIb) and ,1-(tetrachloro-o-phenylenedioxy)-naphthalen-2 (1H)-one (IX), with the former predominating. Further, reactions of (II) with 7-methoxy-3,4-dihydrophenanthren- 1 (2H)-one and m-methoxyphenol gave respectively 7-methoxy- ,2-(tetrachloro-o- phenylenedioxy)phenanthren-1 (2H)-one (VII) and 3-methoxy-6,6-(tetrachloro-o- phenylenedioxy)cyclohexa-2,4-dien-1-one (VIII). Structures of all these compounds have been proved on the basis of i.r. and n.m.r. data. The pathway to the formation of the condensates (III) is discussed.
Resumo:
The hydrolytic reactions of tetrasulphur tetranitride are studied in a homogeneous medium. Alkaline hydrolysis gives sulphite, thiosulphate, sulphate and sulphide whereas the products in acid hydrolysis are mainly sulphur dioxide, elemental sulphur and hydrogen sulphide, with traces of polythionates. Under optimum conditions, tetrasulphur tetranitride reacts with sulphite consuming 2 moles of sulphite per mole of sulphur nitride to give 2 moles of trithionate. The reaction of sulphur nitride with thiosulphuric acid gives pentathionate and tetrathionate.
Resumo:
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|
Resumo:
Reactions of fourteen nucleophiles with the pseudo-acid chloride of o-benzoylbenzoic acid in two solvents have been studied. The nucleophiles that react primarily at the tetrahedral carbon atom to give pseudo derivatives, are weaker than those that react at the carbonyl carbon atom causing opening of the lactone ring. An explanation for this phenomenon is advanced.
Resumo:
The hydrolytic reactions of esters and amides of thiosulphurous acid are investigated in a homogeneous medium. The esters are hydrolysed by alkali to give sulphide, sulphite and thiosulphate whereas the amides are resistant towards alkali. Both the esters and amides are hydrolysed by acids giving hydrogen sulphide, sulphur dioxide, polythionates and elemental sulphur. The hydrolysis of these esters and amides in presence of sulphurous acid and thiosulphuric acid gives tetrathionate and hexathionate, respectively.
Resumo:
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Resumo:
A functioning stock market is an essential component of a competitive economy, since it provides a mechanism for allocating the economy’s capital stock. In an ideal situation, the stock market will steer capital in a manner that maximizes the total utility of the economy. As prices of traded stocks depend on and vary with information available to investors, it is apparent that information plays a crucial role in a functioning stock market. However, even though information indisputably matters, several issues regarding how stock markets process and react to new information still remain unanswered. The purpose of this thesis is to explore the link between new information and stock market reactions. The first essay utilizes new methodological tools in order to investigate the average reaction of investors to new financial statement information. The second essay explores the behavior of different types of investors when new financial statement information is disclosed to the market. The third essay looks into the interrelation between investor size, behavior and overconfidence. The fourth essay approaches the puzzle of negative skewness in stock returns from an altogether different angle than previous studies. The first essay presents evidence of the second derivatives of some financial statement signals containing more information than the first derivatives. Further, empirical evidence also indicates that some of the investigated signals proxy risk while others contain information priced with a delay. The second essay documents different categories of investors demonstrating systematical differences in their behavior when new financial statement information arrives to the market. In addition, a theoretical model building on differences in investor overconfidence is put forward in order to explain the observed behavior. The third essay shows that investor size describes investor behavior very well. This finding is predicted by the model proposed in the second essay, and hence strengthens the model. The behavioral differences between investors of different size furthermore have significant economic implications. Finally, the fourth essay finds strong evidence of management news disclosure practices causing negative skewness in stock returns.
Resumo:
A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.
Resumo:
Reaction of sodium 2-formylbenzenesulphonate (1) with thionyl chloride or phosphorous pentachloride gives a mixture of pseudo (2) and normal (3) sulphonyl chlorides. Whereas ammonium 2-carboxybenzenesulphonate (6) gives only the normal sulphonyl chloride (7) on reaction with thionyl chloride, a mixture of normal (7) and pseudo (8) isomers are formed on reaction with phosphorous pentachloride. Sodium 2-benzoylbenzenesulphonate (15), on the other hand, gives the corresponding normal sulphonyl chloride (16) on reaction with both of the reagents mentioned above. Based on these observations it is concluded that γ-keto sulphonic acids are amenable to the influence of γ-carbonyl group as in the case of γ-keto carboxylic acids but to a lesser extent. © 1989 Indian Academy of Sciences.
Resumo:
A new soft-chemical transformation of layered perovskite oxides is described wherein K2O is sequentially extracted from the Ruddlesden-Popper (R-P) phase, K2La2Ti3O10 (I), yielding novel anion-deficient KLa2Ti3O9.5 (II) and La2Ti3O9 (III). The transformation occurs in topochemical reactions of the R-P phase I with PPh4Br and PBu4Br (Ph = phenyl; Bu = n-butyl). The mechanism involves the elimination of KBr accompanied by decomposition of PR4+ (R = phenyl or n-butyl) that extracts oxygen from the titanate. Analysis of the organic products of decomposition reveals formation of Ph3PO, Ph3P, and Ph-Ph for R = phenyl, and Bu3PO, Bu3P along with butane, butene, and octane for R = butyl. The inorganic oxides II and III crystallize in tetragonal structures (II: P4/mmm, a = 3.8335(1) angstrom, c = 14.334(1) angstrom; III: /4/ mmm, a = 3.8565(2) angstrom, c = 24.645(2) angstrom) that are related to the parent R-P phase. II is isotypic with the Dion-Jacobson phase, RbSr2Nb3O10, while III is a unique layered oxide consisting of charge-neutral La2Ti3O9 anion-deficient perovskite sheets stacked one over the other without interlayer cations. Interestingly, both II and III convert back to the parent R-P phase in a reaction with KNO3. While transformations of the R-P phases to other related layered/three-dimensional perovskite oxides in ion-exchange/metathesis/dehydration/reduction reactions are known, the simultaneous and reversible extraction of both cations and anions in the conversions K2La2Ti3O10 reversible arrow KLa2Ti3O9.5 reversible arrow La2Ti3O9 is reported here for the first time.
Resumo:
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Resumo:
Precipitation involving mixing of two sets of reverse micellar solutions-containing a reactant and precipitant respectively-has been analyzed. Particle formation in such systems has been simulated by a Monte Carlo (MC) scheme (Li, Y.; Park, C. W. Langmuir 1999, 15, 952), which however is very restrictive in its approach. We have simulated particle formation by developing a general Monte Carlo scheme, using the interval of quiescence technique (IQ). It uses Poisson distribution with realistic, low micellar occupancies of reactants, Brownian collision of micelles with coalescence efficiency, fission of dimers with binomial redispersion of solutes, finite nucleation rate of particles with critical number of molecules, and instantaneous particle growth. With the incorporation of these features, the previous work becomes a special case of our simulation. The present scheme was then used to predict experimental data on two systems. The first is the experimental results of Lianos and Thomas (Chem. Phys. Lett. 1986, 125, 299, J. Colloid Interface Sci. 1987, 117, 505) on formation of CdS nanoparticles. They reported the number of molecules in a particle as a function of micellar size and reactant concentrations, which have been predicted very well. The second is on the formation of Fe(OH)(3) nanoparticles, reported by Li and Park. Our simulation in this case provides a better prediction of the experimental particle size range than the prediction of the authors. The present simulation scheme is general and can be applied to explain nanoparticle formation in other systems.