920 resultados para Environmentally-friendly
Resumo:
Mercury (Hg) exposure causes health problems including cardiovascular diseases. Although precise mechanisms have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-9 presents genetic polymorphisms which affect the expression and activity level of this enzyme. Two polymorphisms in the promoter region [C(-1562)T and (CA)(n)] are functionally relevant, and are implicated in several diseases. This study aimed at examining how these polymorphisms affect the circulating MMP-9 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-1 (TIMP-1) in 266 subjects environmentally exposed to Hg. Blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-9 and TIMP-1 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. We found a positive association (P<0.05) between plasma Hg concentrations and MMP-9/TIMP-1 ratio (an index of net MMP-9 activity). When the subjects were divided into tertiles with basis on their plasma Hg concentrations, we found that the (CA)(n) polymorphism modified MMP-9 concentrations and MMP-9/TIMP-1 ratio in subjects with the lowest Hg concentrations (first tertile), with the highest MMP-9 levels being found in subjects with genotypes including alleles with 21 or more CA repeats (H alleles) (P<0.05). Conversely, this polymorphism had no effects on subjects with intermediate or high plasma Hg levels (second and third tertiles, respectively). The C(-1562)T polymorphism had no effects on MMP-9 levels. These findings suggest a significant interaction between the (CA)(n) polymorphism and low levels of Hg exposure, possibly increasing the risk of developing diseases in subjects with H alleles. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Provision of health information to people with aphasia is inadequate. Current practice in providing printed health education materials to people with aphasia does not routinely take into consideration their language and associated reading difficulties. Aims: This study aimed to investigate if people with aphasia can comprehend health information contained in printed health education materials and if the application of aphasia-friendly principles is effective in assisting them to comprehend health information. It was hypothesised that participants with aphasia would comprehend significantly more information from aphasia-friendly materials than from existing materials. Other aims included investigating if the effectiveness of the aphasia-friendly principles is related to aphasia severity, if people with aphasia are more confident in responding to health information questions after they have read the aphasia-friendly material, if they prefer to read the aphasia-friendly brochures, and if they prefer to read the brochure type that resulted in the greatest increase in their knowledge. Methods & Procedures: Twelve participants with mild to moderately severe aphasia were matched according to their reading abilities. A pre and post experimental design was employed with repeated measures ANOVA (p
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
Currently the world around us "reboots" every minute and “staying at the forefront” seems to be a very arduous task. The continuous and “speeded” progress of society requires, from all the actors, a dynamic and efficient attitude both in terms progress monitoring and moving adaptation. With regard to education, no matter how updated we are in relation to the contents, the didactic strategies and technological resources, we are inevitably compelled to adapt to new paradigms and rethink the traditional teaching methods. It is in this context that the contribution of e-learning platforms arises. Here teachers and students have at their disposal new ways to enhance the teaching and learning process, and these platforms are seen, at the present time, as significant virtual teaching and learning supporting environments. This paper presents a Project and attempts to illustrate the potential that new technologies present as a “backing” tool in different stages of teaching and learning at different levels and areas of knowledge, particularly in Mathematics. We intend to promote a constructive discussion moment, exposing our actual perception - that the use of the Learning Management System Moodle, by Higher Education teachers, as supplementary teaching-learning environment for virtual classroom sessions can contribute for greater efficiency and effectiveness of teaching practice and to improve student achievement. Regarding the Learning analytics experience we will present a few results obtained with some assessment Learning Analytics tools, where we profoundly felt that the assessment of students’ performance in online learning environments is a challenging and demanding task.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
In modern society, energy consumption and respect for the environment have become essential aspects of urban planning. The rising demand for alternative sources of energy, coupled with the decline in the construction sector and material usage, gives the idea that the thinking on modern cities, where attention is given to reduced energy consumption, savings, waste recycling and respect for the surrounding environment, is being put into practice. If we examine development of the city over recent centuries, by means of the theories of the most famous and influential urban planners, it is possible to identify the major problems caused by this type of planning. For this reason, in recent urban planning the use of systems of indicators that evaluate and certify land environmentally and energetically guides the master plan toward a more efficient city model. In addition the indicators are targeted on key factors determined by the commissioner or the opportunities the territory itself provides. Due the complexity of the environmental mechanics, the process of design and urban planning has become a challenging issue. The introduction of the indicators system has made it possible to register the life of the process, with a spiral route that allows the design itself to be refined. The aim of this study, built around the creation of a system of urban sustainability indicators that will evaluate highly eco-friendly cities, is to develop a certification system for cities or portions of them. The system will be upgradeable and objective, will employ real data and will be concerned with energy production and consumption.
Resumo:
Fiber Reinforced Polymers (FRPs) have been extensively used for externally bonded reinforcement of masonry structures during the last years. Available information shows that FRPs can significantly improve the seismic performance of masonry elements without altering their structural mass. However, the durability and long-term performance of the strengthened elements are not clearly known yet. Recent experimental results show that environmental conditions can lead to degradation of the bond between FRP and masonry and FRP delaminations. But the effect of these local degradation mechanisms on the global structural response is not studied yet. This paper is therefore aimed at numerically investigating the effect of environmental degradation on the global performance of strengthened masonry walls. The nonlinear behavior of masonry walls strengthened with FRP composites is initially simulated with the aim of a FE package. The adopted numerical modeling strategy is verified by comparison of numerical and experimental results. The model, once validated, is used for investigating the effect of materials and bond degradation on the global behavior and failure modes of strengthened walls. The effect of strengthening scheme on the long-term performance of strengthened walls is also investigated. The degradation data are taken from experimental tests previously performed by the authors. The numerical results show that the effect of local material degradation on the global response of strengthened walls depends on the strengthening schemes, and severity of the environmental conditions. Moreover, environmental induced degradations and FRP delaminations can lead to change of expected failure modes in the strengthened elements. These observations, that are usually neglected at the design stage, can be critical in the long-term performance of strengthened structures.
Resumo:
Biopolymer-based materials have been of particular interest as alternatives do synthetic polymers due to their low toxicity, biodegradability and biocompatibility. Among them, chitosan is one of the most studied ones and has recently been investigated for the application as solid state polymer electrolytes. Furthermore, it can serve as a host for luminescent species such as rare earth ions, giving rise to materials with increased functionality, of particular interest for electrochemical devices. In this study, we investigate chitosan based luminescent materials doped wit Eu3+ and Li+ triflate salts from the structural, photophysical and conductivity points of view. Because the host presents a broad emission band in the blue to green, while Eu3+ emits in the red, fine tuning of emission colour and/or generation of white light is possible by optimizing composition and excitation scheme. Europium lifetimes (5D0) are in the range 270 – 350 µs and quantum yields are as high as 2%. Although Li+ does not interfere with the luminescent properties, it grants ion-conducting properties to the material suggesting that a combination of both properties could be further explored in multifunctional device.
Resumo:
The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find ecofriendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (?34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.
Resumo:
This paper shows how a high level matrix programming language may be used to perform Monte Carlo simulation, bootstrapping, estimation by maximum likelihood and GMM, and kernel regression in parallel on symmetric multiprocessor computers or clusters of workstations. The implementation of parallelization is done in a way such that an investigator may use the programs without any knowledge of parallel programming. A bootable CD that allows rapid creation of a cluster for parallel computing is introduced. Examples show that parallelization can lead to important reductions in computational time. Detailed discussion of how the Monte Carlo problem was parallelized is included as an example for learning to write parallel programs for Octave.
Resumo:
OBJECTIVE: To assess satisfaction among female patients of a youth friendly clinic and to determine with which factors this was associated. METHODS: A cross-sectional survey was conducted in an adolescent clinic in Lausanne, Switzerland, between March and May 2008. All female patients who had made at least one previous visit were eligible. Three hundred and eleven patients aged 12-22 years were included. We performed bivariate analysis to compare satisfied and non-satisfied patients and constructed a log-linear model. RESULTS: Ninety-four percent of patients were satisfied. Satisfied female adolescents were significantly more likely to feel that their complaints were heard, that the caregiver understood their problems, to have no change of physician, to have received the correct treatment/help and to follow the caregiver's advice. The log-linear model highlighted four factors directly linked with patient satisfaction: outcome of care, continuity of care, adherence to treatment and the feeling of being understood. CONCLUSIONS: The main point for female adolescent patient satisfaction lies in a long term, trustworthy relationship with their caregiver. Confidentiality and accessibility were secondary for our patients.