985 resultados para Engineering geological mapping
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.
Resumo:
This chapter explores the impact of innovation technologies such as simulation, modelling, and rapid prototyping on engineering practice. Innovation technologies help redefine the role of engineers in the innovation process, creating a new division of innovative labour both with and across organizations. This chapter also explores the boundaries of experimentation and inertia within particular domains of problem-solving to create new opportunities and value.
Resumo:
Background-Puncture of the atrial appendage may provide access to the pericardial space. The aim of this study was to evaluate the feasibility of epicardial mapping and ablation through an endocardial transatrial access in a swine model. Methods and Results-An 8-F Mullins sheath was used to perforate the right (n=16) or left (n=1) atrial appendage in 17 pigs (median weight, 27.5 kg; first and third quartiles [Q1, Q3], 25.2, 30.0 kg). A 7-F ablation catheter was introduced into the pericardial space to perform epicardial mapping and deliver radiofrequency pulses on the atria. The pericardial space was entered in all 17 animals. In 15 (88%) animals, there was no hemodynamic instability (mean blood pressure monitoring, initial median, 80 mm Hg; Q1, Q3, 70, 86 mm Hg; final median, 88 mm Hg; Q1, Q3, 80, 96 mm Hg; P=0.426). In these 15, a mild hemorrhagic pericardial effusion was identified and aspirated (median, 20 mL; Q1, Q3, 15, 30 mL) during the procedure, and postmortem gross analysis revealed that the atrial perforation was closed in these animals. In 2 (12%) of the 17 animals, there was major pericardial bleeding with hemodynamic collapse. On gross examination, it was found that pericardial space was accessed through right ventricular perforation in 1 animal and the tricuspid annulus in the other. After the initial study, we used an occlusion device in 3 other animals to attempt to seal the puncture (2 at the right atrial appendage and 1 at the right ventricle). These 3 animals had no significant pericardial bleeding. Conclusions-Transatrial endovascular right atrial appendage puncture may provide a potential alternative route for pericardial access. Further studies are needed to evaluate its safety with longer and more-complex procedures before being applied in clinical settings. (Circ Arrhythm Electrophysiol. 2011;4:331-336.)
Resumo:
This paper describes a practical application of MDA and reverse engineering based on a domain-specific modelling language. A well defined metamodel of a domain-specific language is useful for verification and validation of associated tools. We apply this approach to SIFA, a security analysis tool. SIFA has evolved as requirements have changed, and it has no metamodel. Hence, testing SIFA’s correctness is difficult. We introduce a formal metamodelling approach to develop a well-defined metamodel of the domain. Initially, we develop a domain model in EMF by reverse engineering the SIFA implementation. Then we transform EMF to Object-Z using model transformation. Finally, we complete the Object-Z model by specifying system behavior. The outcome is a well-defined metamodel that precisely describes the domain and the security properties that it analyses. It also provides a reliable basis for testing the current SIFA implementation and forward engineering its successor.
Resumo:
Background: This study of a chronic porcine postinfarction model examined whether linear epicardial cryoablation was capable of creating large, homogenous lesions in regions of the myocardium including scarred ventricle. Endocardial and epicardial focal cryolesions were also compared to determine if there were significant differences in lesion characteristics. Methods: Eighty focal endocardial and 28 focal epicardial cryoapplications were delivered to eight normal caprine and four normal porcine ventricular myocardium, and 21 linear cryolesions were applied along the border of infarcted epicardial tissue in a chronic porcine infarct model in six swines. Results: Focal endocardial cryolesions in normal animals measured 9.7 +/- 0.4 mm (length) by 7.3 +/- 1.4 mm (width) by 4.8 +/- 0.2 mm (depth), while epicardial lesions measured 10.2 +/- 1.4 mm (length) by 7.7 +/- 2 mm (width) by 4.6 +/- 0.9 mm (depth); P > 0.05. Linear epicardial cryolesions in the chronic porcine infarct model measured 36.5 +/- 7.8 mm (length) by 8.2 +/- 1.3 mm (width) by 6.0 +/- 1.2 mm (depth). The mean depth of linear cryolesions applied to the border of the infarct scar was 7 +/- 0.7 mm, as measured by magnetic resonance imaging. Conclusions:Cryoablation can create deep lesions when delivered to the ventricular epicardium. Endocardial and epicardial cryolesions created by a focal cryoablation catheter are similar in size and depth. The ability to rapidly create deep linear cryolesions may prove to be beneficial in substrate-based catheter ablation of ventricular arrhythmias.
Resumo:
Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications.