946 resultados para Energy levels (Quantum mechanics)
Resumo:
Betaine dyes are known to show very large transition energy shifts in different solvents. The ortho-betaine molecule - a simple two-ring prototype of the E-T(30) Reichardt dye - has been investigated theoretically from a combined statistical and quantum mechanics approach. Using sequential Monte Carlo (MC) simulations and MP2/cc-pVDZ calculations the in-water dipole moment of ortho-betaine is obtained as 12.30 +/- 0.05 D. This result shows a considerable increase of 75% compared to the in-vacuum dipole moment. For comparison, the use of a polarizable continuum model using the same MP2/cc-pVDZ leads to an in-water dipole moment of 11.6 D, in good agreement. This large polarization is incorporated in the classical potential for another MC simulation to generate solute-solvent configurations and to obtain the contribution of the polarization effect in the solvatochromic shift. Using statistically uncorrelated configurations and supermolecular INDO/CIS calculations, including the solute and, explicitly, 230 solvent water molecules, the statistically converged calculated shift is obtained here as 6360 cm(-1), in good agreement with the experimental result of 7550 cm(-1). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a description of the Stem-Gerlach type experiments using only the concepts of classical electrodynamics and the Newton`s equations of motion. The quantization of the projections of the spin (or the projections of the magnetic dipole) is not introduced in our calculations. The main characteristic of our approach is a quantitative analysis of the motion of the magnetic atoms at the entrance of the magnetic field region. This study reveals a mechanism which modifies continuously the orientation of the magnetic dipole of the atom in a very short time interval, at the entrance of the magnetic field region. The mechanism is based on the conservation of the total energy associated with a magnetic dipole which moves in a non uniform magnetic field generated by an electromagnet. A detailed quantitative comparison with the (1922) Stem-Gerlach experiment and the didactical (1967) experiment by J.R. Zacharias is presented. We conclude, contrary to the original Stern-Gerlach statement, that the classical explanations are not ruled out by the experimental data.
Resumo:
The third law of thermodynamics is formulated precisely: all points of the state space of zero temperature I""(0) are physically adiabatically inaccessible from the state space of a simple system. In addition to implying the unattainability of absolute zero in finite time (or ""by a finite number of operations""), it admits as corollary, under a continuity assumption, that all points of I""(0) are adiabatically equivalent. We argue that the third law is universally valid for all macroscopic systems which obey the laws of quantum mechanics and/or quantum field theory. We also briefly discuss why a precise formulation of the third law for black holes remains an open problem.
Resumo:
We revisit the problem of an otherwise classical particle immersed in the zero-point radiation field, with the purpose of tracing the origin of the nonlocality characteristic of Schrodinger`s equation. The Fokker-Planck-type equation in the particles phase-space leads to an infinite hierarchy of equations in configuration space. In the radiationless limit the first two equations decouple from the rest. The first is the continuity equation: the second one, for the particle flux, contains a nonlocal term due to the momentum fluctuations impressed by the field. These equations are shown to lead to Schrodinger`s equation. Nonlocality (obtained here for the one-particle system) appears thus as a property of the description, not of Nature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The model of dynamical noncommutativity is proposed. The system consists of two interrelated parts. The first of them describes the physical degrees of freedom with the coordinates q(1) and q(2), and the second corresponds to the noncommutativity eta which has a proper dynamics. After quantization, the commutator of two physical coordinates is proportional to the function of eta. The interesting feature of our model is the dependence of nonlocality on the energy of the system. The more the energy, the more the nonlocality. The leading contribution is due to the mode of noncommutativity; however, the physical degrees of freedom also contribute in nonlocality in higher orders in theta .
Resumo:
A criticism of a recent article published in this journal, claiming to have reached a classical description of the Stern-Gerlach phenomenon, is presented here. The author of the article, among other mistakes, wrongly writes the total energy of each silver atom and, moreover, presents a nonsensical equation, from which his results and the conclusion of his article are derived.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.
Resumo:
The minimum energy path along the lowest-lying pi pi* excited state of 2-aminopurine was calculated to elucidate the mechanisms of radiationless decay and emission in water. The sequential Monte Carlo quantum mechanics approach with a multiconfigurational and perturbative description of the wave function was employed to compute the minimum, transition state, and conical intersection. It was found that the barrier in the potential energy surface to access the conical intersection funnel increases in aqueous environment, making the system prone to enlarge the emission yield. These results rationalize the observed enhancement of emission in 2-aminopurine upon increasing of the solvent polarity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present study was to evaluate the effects of different dietary energy levels and stocking densities on the thermoregulating parameters, live performance, and carcass traits of broilers reared under tropical winter conditions at different times of the day. In total, 1,312 one-d-old male broilers were used. Birds were allotted to three different stocking densities (10, 14 or 18 birds/m²) and two dietary energy levels (2900 or 3200 kcal ME/kg). The following parameters were evaluated:radiant heat load (RHL), rectal temperature (RT), feed intake (FI), weight gain (WG), feed conversion ratio (FCR), livability (L), production of live weight per area (WA), and carcass yield. Stocking density did not affect sensible heat loss (SRL) or rectal temperature (RT); however, as expected, sensible heat loss (SRL) and RT were influenced by time of the day, with higher values in the morning and in the afternoon, respectively. There was no effect of treatment (p>0.05) on carcass or parts yield. Feed intake was reduced in 3%, whereas weight gain and feed conversion ratio improved in 8 and 10%, respectively, as dietary energy level increased. on the other hand, stocking density did not influence live performance or carcass traits. Based on the present results, it is concluded that sensible heat loss depends on dietary energy levels and particularly on time of the day. Therefore, environmental house management is suggested during tropical winters in order to reduce differences between broiler skin and environmental temperatures in the morning and in the afternoon.
Resumo:
Male broilers were used to evaluate the effects of different energy levels in finisher diets and age of slaughter on performance, production pattern and carcass yield. Experimental design was a 2x3 factorial arrangement: energy level (ME) in the finisher diet (3,200 and 3,600 kcal ME/kg) and age of slaughter (42, 49 and 56 days), resulting in six treatments with four replicates. The finisher diet was fed only in the last week of the growing period. Characteristics evaluated were feed consumption (FC), body weight gain (WG), feed conversion (FC), energy intake (EI), caloric conversion (CC), efficiency production index, production pattern, and carcass yield. The results showed better WG and CC for broilers fed 3,200 kcal ME/kg finisher diet. Broilers slaughtered at 42 and 49 days of age had better performance and higher annual production than broilers slaughtered at 56 days of age. Carcass yield was influenced by slaughter age and better breast yield was seen at 49 and 56 days than at 42 days of age. It was concluded that 3,200 kcal ME/kg induced the best overall performance. Poultry houses were efficiently used when broilers were slaughtered at 42 days of age. Meat:bone ratio was improved for broilers slaughtered at 49 and 56 days of age.
Resumo:
In the first part of this work our concern was to investigate the thermal effects in organic crystals using the theory of the polarons. To analyse such effect, we used the Fröhlich s Hamiltonian, that describes the dynamics of the polarons, using a treatment based on the quantum mechanics, to elucidate the electron-phonon interaction. Many are the forms to analyzing the polaronic phenomenon. However, the measure of the dielectric function can supply important information about the small polarons hopping process. Besides, the dielectric function measures the answer to an applied external electric field, and it is an important tool for the understanding of the many-body effects in the normal state of a polaronic system. We calculate the dielectric function and its dependence on temperature using the Hartree-Fock decoupling method. The dieletric function s dependence on the temperature is depicted by through a 3D graph. We also analyzed the so called Arrhenius resistivity, as a functionof the temperature, which is an important tool to characterize the conductivity of an organic molecule. In the second part we analyzed two perovskita type crystalline oxides, namely the cadmium silicate triclinic (CdSiO3) and the calcium plumbate orthorhombic (CaPbO3), respectively. These materials are normally denominated ABO3 and they have been especially investigated for displaying ferroelectric, piezoelectric, dielectrics, semiconductors and superconductors properties. We found our results through ab initio method within the functional density theory (DFT) in the GGA-PBE and LDA-CAPZ approximations. After the geometry optimization for the two structure using the in two approximations, we found the structure parameters and compared them with the experimental data. We still determined further the angles of connection for the two analyzed cases. Soon after the convergence of the energy, we determined their band structures, fundamental information to characterize the nature of the material, as well as their dielectrics functions, optical absorption, partial density of states and effective masses of electrons and holes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to identify and review of the conceptual differences presented by authors of books, focusing on the theme of electronic configuration. It shows the changing concepts of electronic configuration, its implications for the cognitive development of students and their relations with the contemporary world. We identified possible obstacles in books generated in the search for simplifications, situations of different concepts of energy in the electron configuration for sublevels. For this analysis was carried out in several books, and some other general chemistry and inorganic chemistry without distinguishing between level of education, whether secondary or higher. It was found that some books for school books corroborated with higher education, others do not. To check the consistency of what was discussed, it was a survey of 30 teachers, it was found divergent points of responses, particularly with respect to the energy sublevels and authorship of the diagram which facilitated the electron configuration. It was found that the total 22professores, ie, 73,33% answered correctly on the energy sublevel more calcium (Ca) and 80%, ie, 24 teachers responded incorrectly on the iron. As for the authorship of the diagram used to facilitate the electronic configuration, we obtained 93, 33% of teachers indicated that they followed a diagram, and this was called "Diagram of Linus Pauling," teacher 01, 3,33%, indicated that the diagram was authored by Madelung and 01, 3,33%, did not respond to question. Was observed that it is necessary a more detailed assessment of ancient writings, as the search for simplifications and generalizations, not so plausible, lead to errors and consequences negative for understanding the properties of many substances. It was found that quantum mechanics combined with spectroscopic data should be part of a more thorough analysis, especially when it extends situations atoms monoelectronicpolieletrônicos to describe atoms, because factors such as effective nuclear charge and shielding factor must be taken into consideration, because interactions there is inside an atom, described by a set ofquantum numbers, sometimes not taken into account