936 resultados para Energy conservation
Resumo:
Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.
Resumo:
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or ``sequence conservation'' as the basis for their understanding. Recently ``interaction energy'' based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the ``interaction conservation'' viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.
Resumo:
Promoter regions in the genomes of all domains of life show similar trends in several structural properties such as stability, bendability, curvature, etc. In current study we analysed the stability and bendability of various classes of promoter regions (based on the recent identification of different classes of transcription start sites) of Helicobacter pylori 26695 strain. It is found that primary TSS and operon-associated TSS promoters show significantly strong features in their promoter regions. DNA free-energy-based promoter prediction tool PromPredict was used to annotate promoters of different classes, and very high recall values (similar to 80%) are obtained for primary TSS. Orthologous genes from other strains of H. pylori show conservation of structural properties in promoter regions as well as coding regions. PromPredict annotates promoters of orthologous genes with very high recall and precision.
Resumo:
One hundred complexes have been investigated exhibiting D-X center dot center dot center dot A interactions, where X = H, Cl or Li and DX is the `X bond' donor and A is the acceptor. The optimized structures of all these complexes have been used to propose a generalized `Legon-Millen rule' for the angular geometry in all these interactions. A detailed Atoms in Molecules (AIM) theoretical analysis confirms an important conclusion, known in the literature: there is a strong correlation between the electron density at the X center dot center dot center dot A bond critical point (BCP) and the interaction energy for all these interactions. In addition, we show that extrapolation of the fitted line leads to the ionic bond for Li-bonding (electrostatic) while for hydrogen and chlorine bonding, it leads to the covalent bond. Further, we observe a strong correlation between the change in electron density at the D-X BCP and that at the X center dot center dot center dot A BCP, suggesting conservation of the bond order. The correlation found between penetration and electron density at BCP can be very useful for crystal structure analysis, which relies on arbitrary van der Waals radii for estimating penetration. Various criteria proposed for shared-and closed-shell interactions based on electron density topology have been tested for H/Cl/Li bonded complexes. Finally, using the natural bond orbital (NBO) analysis it is shown that the D-X bond weakens upon X bond formation, whether it is ionic (DLi) or covalent (DH/DCl) and the respective indices such as ionicity or covalent bond order decrease. Clearly, one can think of conservation of bond order that includes ionic and covalent contributions to both D-X and X center dot center dot center dot A bonds, for not only X = H/Cl/Li investigated here but also any atom involved in intermolecular bonding.
Resumo:
Optical emission from emitters strongly interacting among themselves and also with other polarizable matter in close proximity has been approximated by emission from independent emitters. This is primarily due to our inability to evaluate the self-energy matrices and radiative properties of the collective eigenstates of emitters in heterogeneous ensembles. A method to evaluate self-energy matrices that is not limited by the geometry and material composition is presented to understand and exploit such collective excitations. Numerical evaluations using this method are used to highlight the significant differences between independent and the collective modes of emission in nanoscale heterostructures. A set of N Lorentz emitters and other polarizable entities is used to represent the coupled system of a generalized geometry in a volume integral approach. Closed form relations between the Green tensors of entity pairs in free space and their correspondents in a heterostructure are derived concisely. This is made possible for general geometries because the global matrices consisting of all free-space Green dyads are subject to conservation laws. The self-energy matrix can then be assembled using the evaluated Green tensors of the heterostructure, but a decomposition of its components into their radiative and nonradiative decay contributions is nontrivial. The relations to compute the observables of the eigenstates (such as quantum efficiency, power/energy of emission, radiative and nonradiative decay rates) are presented. A note on extension of this method to collective excitations, which also includes strong interactions with a surface in the near-field, is added. (C) 2014 Optical Society of America
Resumo:
The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.
Resumo:
Observers were placed at offshore sites to monitor and protect sea turtles during explosive removals of oil and gas structures in the Gulf of Mexico off Louisiana and Texas. Data collected during more than 6,500 hours of monitoring at 106 structure removals in 1992 provided information on sea turtle distribution. Eighteen individuals were observed including 10 loggerheads, 2 leatherbacks, 1 hawksbill, and 5 unidentified sea turtles. The observation rate (individuals per monitoring hour) of sea turtles was about 30 times higher during aerial surveys than during day or night suiface surveys.
Resumo:
Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Haplochrmine cichlids were the most abundant taxa in Lakes Victoria, Kyoga and Nabugabo prior to introduction of the Nile perch. As stocks of the introduced predator increased, these taxa were depleted to such an extent that they are now virtually absent from the lake. The haplochromine cichlids played an important role in the ecology of Lakes Victoria, Kyoga and Nabugabo. They occupied virtually all trophic levels in the lake and facilitated an efficient flow of energy through the ecosystem. Their depletion seem to have left much organic matter whose decomposition has contributed to accumulation of dead organic matter which may be contributing to prolonged anoxia in Lake Victoria. The haplochromines formed an important small-scale fishery. Fishermen formerly subsisting on this fishery have been driven out of business because they cannot afford the expensive nets required for Nile perch fishery. In addition to providing a cheap source of fish protein to humans, the species were an important source of Scientific material for students of genetics antd adaptive radiation.
Resumo:
A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
This paper is part of a larger PhD research project examining the apparent conflict in UK planning between energy efficiency and conservation for the retrofit of the thermal envelope of the existing building stock. Review of the literature shows that the UK will not meet its 2050 emission reduction target without substantial improvement to the energy performance of the thermal envelope of the existing building stock and that significantly, 40% of the existing stock has heritage status and may be exempted from Building Regulations. A review of UK policy and legislation shows that there are clear national priorities towards reducing emissions and addressing climate change, yet also shows a movement towards local decision making and control. This paper compares the current status of thirteen London Boroughs in respect to their position on thermal envelope retrofit for heritage and traditionally constructed buildings. Data collection is through ongoing surveys and interviews that compare statistical data, planning policies, sustainability and environmental priorities, and Officer decision-making. This paper finds that there is a lack of consistency in application of planning policy across Boroughs and suggests that this is a barrier to the up-take of energy efficient retrofit. Various recommendations are suggested at both national and local level which could help UK planning and planning officers deliver more energy efficient heritage retrofits.
Resumo:
We investigate the conservation law of energy momentum for Randall-Sundrum models by the general displacement transform. The energy momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is epsilon = epsilon(0)e(-3 vertical bar y vertical bar).
Resumo:
The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.
Resumo:
The rapid increase in the number of tidal stream turbine arrays will create novel and unprecedented levels of anthropogenic activity within habitats characterized by horizontal current speeds exceeding 2 ms−1. However, the potential impacts on pursuit‐diving seabirds exploiting these tidal stream environments remain largely unknown. Identifying similarities between the fine‐scale physical features (100s of metres) suitable for array installations, and those associated with foraging pursuit‐diving seabirds, could identify which species are most vulnerable to either collisions with moving components, or displacement from these installations. A combination of vessel‐based observational surveys, Finite Volume Community Ocean Model outputs and hydroacoustic seabed surveys provided concurrent measures of foraging distributions and physical characteristics at a fine temporal (15 min) and spatial (500 m) resolution across a tidal stream environment suitable for array installations, during both breeding and non‐breeding seasons. These data sets were then used to test for associations between foraging pursuit‐diving seabirds (Atlantic puffins Fratercula arctica, black guillemots Cepphus grylle, common guillemots Uria aalge, European shags Phalacrocorax aristotelis) and physical features. These species were associated with areas of fast horizontal currents, slow horizontal currents, high turbulence, downward vertical currents and also hard–rough seabeds. The identity and strength of associations differed among species, and also within species between seasons, indicative of interspecific and intraspecific variations in habitat use. However, Atlantic puffins were associated particularly strongly with areas of fast horizontal currents during breeding seasons, and European shags with areas of rough–hard seabeds and downward vertical currents during non‐breeding seasons. Synthesis and applications. Atlantic puffins’ strong association with fast horizontal current speeds indicates that they are particularly likely to interact with installations during breeding seasons. Any post‐installation monitoring and mitigation measures should therefore focus on this species and season. The multi‐species associations with high turbulence and downward vertical currents, which often coincide with fast horizontal current speeds, also highlight useful pre‐installation mitigation measures via the omission of devices from these areas, reducing the overall likelihood of interactions. Environmental impact assessments (EIA) generally involve once‐a‐month surveys across 2‐year periods. However, the approaches used in this study show that more focussed surveys can greatly benefit management strategies aiming to reduce the likelihood of negative impacts by facilitating the development of targeted mitigation measures. It is therefore recommended that these approaches contribute towards EIA within development sites.