873 resultados para Energy Efficient Algorithms
Resumo:
Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.
Resumo:
Biomass is the term given to naturally-produced organic matter resulting from photosynthesis, and represents the most abundant organic polymers on Earth. Consequently, there has been great interest in the potential exploitation of lignocellulosic biomass as a renewable feedstock for energy, materials and chemicals production. The energy sector has largely focused on the direct thermochemical processing of lignocellulose via pyrolysis/gasification for heat generation, and the co-production of bio-oils and bio-gas which may be upgraded to produce drop-in transportation fuels. This mini-review describes recent advances in the design and application of solid acid catalysts for the energy efficient upgrading of pyrolysis biofuels.
Resumo:
The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.
Resumo:
Since privatisation, maintenance of DNO LV feeder maximum demand information has gradually demised in some Utility Areas, and it is postulated that lack of knowledge about 11kV and LV electrical networks is resulting in a less economical and energy efficient Network as a whole. In an attempt to quantify the negative impact, this paper examines ten postulated new connection scenarios for a set of real LV load readings, in order to find the difference in design solutions when LV load readings were and were not known. The load profiles of the substations were examined in order to explore the utilisation profile. It was found that in 70% of the scenarios explored, significant cost differences were found. These cost differences varied by an average of 1000%, between schemes designed with and without load readings. Obviously, over designing a system and therefore operating more, underutilised transformers becomes less financially beneficial and less energy efficient. The paper concludes that new connection design is improved in terms of cost when carried out based on known LV load information and enhances the case for regular maximum feeder demand information and/or metering of LV feeders. © 2013 IEEE.
Resumo:
2000 Mathematics Subject Classification: 62G07, 62L20.
Resumo:
Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.
Resumo:
Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.
Resumo:
Satisfiability, implication and equivalence problems are important and widely-encountered database problems that need to be efficiently and effectively solved. We provide a comprehensive and systematic study of these problems. We consider three popular types of arithmetic inequalities, (X op C), (X op Y), and (X op Y + C), where X and Y are attributes, C is a constant of the domain of X, and op $\in\ \{{<},\ {\le},\ {=},\ {\not=},\ {>},\ {\ge}\}.$ These inequalities are most frequently used in a database system, since the first type of inequalities represents $\theta$-join, the second type represents selection, and the third type is popular in deductive databases. We study the problems under the integer domain and the real domain, as well as under two different operator sets.^ Our results show that solutions under different domains and/or different operator sets are quite different. In this dissertation, we either report the first necessary and sufficient conditions as well as their efficient algorithms with complexity analysis, or provide improved algorithms. ^
Resumo:
Expected damages of environmental risks depend both on their intensities and probabilities. There is very little control over probabilities of climate related disasters such as hurricanes. Therefore, researchers of social science are interested identifying preparation and mitigation measures that build human resilience to disasters and avoid serious loss. Conversely, environmental degradation, which is a process through which the natural environment is compromised in some way, has been accelerated by human activities. As scientists are finding effective ways on how to prevent and reduce pollution, the society often fails to adopt these effective preventive methods. Researchers of psychological and contextual characterization offer specific lessons for policy interventions that encourage human efforts to reduce pollution. This dissertation addresses four discussions of effective policy regimes encouraging pro-environmental preference in consumption and production, and promoting risk mitigation behavior in the face of natural hazards. The first essay describes how the speed of adoption of environment friendly technologies is driven largely by consumers' preferences and their learning dynamics rather than producers' choice. The second essay is an empirical analysis of a choice experiment to understand preferences for energy efficient investments. The empirical analysis suggests that subjects tend to increase energy efficient investment when they pay a pollution tax proportional to the total expenditure on energy consumption. However, investments in energy efficiency seem to be crowded out when subjects have the option to buy health insurance to cover pollution related health risks. In context of hurricane risk mitigation and in evidence of recently adopted My Safe Florida Home (MSFH) program by the State of Florida, the third essay shows that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow home inspection to seek mitigation information. The fourth essay evaluates the impact of utility disruption on household well being based on the responses of a household-level phone survey in the wake of hurricane Wilma. Findings highlight the need for significant investment to enhance the capacity of rapid utility restoration after a hurricane event in the context of South Florida.
Resumo:
The performance of building envelopes and roofing systems significantly depends on accurate knowledge of wind loads and the response of envelope components under realistic wind conditions. Wind tunnel testing is a well-established practice to determine wind loads on structures. For small structures much larger model scales are needed than for large structures, to maintain modeling accuracy and minimize Reynolds number effects. In these circumstances the ability to obtain a large enough turbulence integral scale is usually compromised by the limited dimensions of the wind tunnel meaning that it is not possible to simulate the low frequency end of the turbulence spectrum. Such flows are called flows with Partial Turbulence Simulation. In this dissertation, the test procedure and scaling requirements for tests in partial turbulence simulation are discussed. A theoretical method is proposed for including the effects of low-frequency turbulences in the post-test analysis. In this theory the turbulence spectrum is divided into two distinct statistical processes, one at high frequencies which can be simulated in the wind tunnel, and one at low frequencies which can be treated in a quasi-steady manner. The joint probability of load resulting from the two processes is derived from which full-scale equivalent peak pressure coefficients can be obtained. The efficacy of the method is proved by comparing predicted data derived from tests on large-scale models of the Silsoe Cube and Texas-Tech University buildings in Wall of Wind facility at Florida International University with the available full-scale data. For multi-layer building envelopes such as rain-screen walls, roof pavers, and vented energy efficient walls not only peak wind loads but also their spatial gradients are important. Wind permeable roof claddings like roof pavers are not well dealt with in many existing building codes and standards. Large-scale experiments were carried out to investigate the wind loading on concrete pavers including wind blow-off tests and pressure measurements. Simplified guidelines were developed for design of loose-laid roof pavers against wind uplift. The guidelines are formatted so that use can be made of the existing information in codes and standards such as ASCE 7-10 on pressure coefficients on components and cladding.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm.
Resumo:
A Wireless Sensor Network (WSN) consists of distributed devices in an area in order to monitor physical variables such as temperature, pressure, vibration, motion and environmental conditions in places where wired networks would be difficult or impractical to implement, for example, industrial applications of difficult access, monitoring and control of oil wells on-shore or off-shore, monitoring of large areas of agricultural and animal farming, among others. To be viable, a WSN should have important requirements such as low cost, low latency, and especially low power consumption. However, to ensure these requirements, these networks suffer from limited resources, and eventually being used in hostile environments, leading to high failure rates, such as segmented routing, mes sage loss, reducing efficiency, and compromising the entire network, inclusive. This work aims to present the FTE-LEACH, a fault tolerant and energy efficient routing protocol that maintains efficiency in communication and dissemination of data.This protocol was developed based on the IEEE 802.15.4 standard and suitable for industrial networks with limited energy resources
Resumo:
Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own energetic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communication. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints.
The backscatter channel presents a unique set of challenges. Unlike a conventional one-way communication (in which the information source is also the energy source), the backscatter channel experiences strong self-interference and spread Doppler clutter that mask the information-bearing (modulated) signal scattered from the device. Both of these sources of interference arise from the scattering of the transmitted signal off of objects, both stationary and moving, in the environment. Additionally, the measurement of the location of the backscatter device is negatively affected by both the clutter and the modulation of the signal return.
This work proposes a channel coding framework for the backscatter channel consisting of a bi-static transmitter/receiver pair and a quasi-cooperative transponder. It proposes to use run-length limited coding to mitigate the background self-interference and spread-Doppler clutter with only a small decrease in communication rate. The proposed method applies to both binary phase-shift keying (BPSK) and quadrature-amplitude modulation (QAM) scheme and provides an increase in rate by up to a factor of two compared with previous methods.
Additionally, this work analyzes the use of frequency modulation and bi-phase waveform coding for the transmitted (interrogating) waveform for high precision range estimation of the transponder location. Compared to previous methods, optimal lower range sidelobes are achieved. Moreover, since both the transmitted (interrogating) waveform coding and transponder communication coding result in instantaneous phase modulation of the signal, cross-interference between localization and communication tasks exists. Phase discriminating algorithm is proposed to make it possible to separate the waveform coding from the communication coding, upon reception, and achieve localization with increased signal energy by up to 3 dB compared with previous reported results.
The joint communication-localization framework also enables a low-complexity receiver design because the same radio is used both for localization and communication.
Simulations comparing the performance of different codes corroborate the theoretical results and offer possible trade-off between information rate and clutter mitigation as well as a trade-off between choice of waveform-channel coding pairs. Experimental results from a brass-board microwave system in an indoor environment are also presented and discussed.
Resumo:
The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.