960 resultados para Endothelial disruptions
Resumo:
We examined the relationship between chronic caregiving stress and endothelial function.
Resumo:
Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.
Resumo:
Important insights into the molecular mechanism of T cell extravasation across the blood-brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally suited as in vitro models with which to study the cellular and molecular mechanisms of T cell extravasation across the BBB. We found that both in vitro BBB models equally supported both T cell adhesion under static and physiologic flow conditions, and T cell crawling on the endothelial surface against the direction of flow. In contrast, distances of T cell crawling on pMBMECs were strikingly longer than on bEnd5, whereas diapedesis of T cells across pMBMECs was dramatically reduced compared with bEnd5. Thus, both in vitro BBB models are suited to study T cell adhesion. However, because pMBMECs better reflect endothelial BBB specialization in vivo, we propose that more reliable information about the cellular and molecular mechanisms of T cell diapedesis across the BBB can be attained using pMBMECs.
Resumo:
The presence of endothelial cell (EC)-derived surface molecules in the circulation is among hallmarks of endothelial activation and damage in vivo. Previous investigations suggest that upregulation of T-cadherin (T-cad) on the surface of ECs may be a characteristic marker of EC activation and stress. We investigated whether T-cad might also be shed from ECs and in amounts reflecting the extent of activation or damage.
Resumo:
To evaluate the intraoperative use of handheld Fourier-domain optical coherence tomography (OCT) during Descemet stripping automated endothelial keratoplasty (DSAEK) to assess the donor-host interface.
Resumo:
Endothelial dysfunction (ED) is frequently present in patients presenting with acute or stable coronary artery disease (CAD), but it is also found in patients presenting with chest pain without angiographic coronary lesions.
Resumo:
ADAMTS1 inhibits capillary sprouting, and since capillary sprouts do not experience the shear stress caused by blood flow, this study undertook to clarify the relationship between shear stress and ADAMTS1. It was found that endothelial cells exposed to shear stress displayed a strong upregulation of ADAMTS1, dependent upon both the magnitude and duration of their exposure. Investigation of the underlying pathways demonstrated involvement of phospholipase C, phosphoinositide 3-kinase, and nitric oxide. Forkhead box protein O1 was identified as a likely inhibitor of the system, as its knockdown was followed by a slight increase in ADAMTS1 expression. In silico prediction displayed a transcriptional binding site for Forkhead box protein O1 in the promotor region of the ADAMTS1 gene, as well as sites for nuclear factor 1, SP1, and AP-1. The anti-angiogenic effects of ADAMTS1 were attributed to its cleavage of thrombospondin 1 into a 70-kDa fragment, and a significant enhancement of this fragment was indeed demonstrated by immunoblotting shear stress-treated cells. Accordingly, scratch wound closure displayed a slowdown in conditioned medium from shear stress-treated endothelial cells, an effect that could be completely blocked by a knockdown of thrombospondin 1 and partially blocked by a knockdown of ADAMTS1. Non-perfused capillary sprouts in rat mesenteries stained negative for ADAMTS1, while vessels in the microcirculation that had already experienced blood flow yielded the opposite results. The shear stress-dependent expression of ADAMTS1 in vitro was therefore also demonstrated in vivo and thereby confirmed as a mechanism connecting blood flow with the regulation of angiogenesis.
Resumo:
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.
Resumo:
The goal of this study was to evaluate in vitro and in vivo the effects of up-regulation of the proangiogenic hypoxia inducible factor (HIF)-1α induced by dimethyloxalylglycine on endothelial cell cultures and on skin flap survival.
Resumo:
Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.
Resumo:
A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.
Resumo:
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Resumo:
Stress and depressive symptoms have been associated with impaired endothelial function as measured by brachial artery flow-mediated dilation (FMD), possibly through repeated and heightened activation of the sympathetic nervous system. Behavioral correlates of depression, such as satisfaction with leisure activities (i.e., leisure satisfaction), may also be associated with endothelial function via their association with depressive symptoms. This study examined the longitudinal associations between stress, depressive symptoms, leisure satisfaction, and endothelial function as measured by FMD.