855 resultados para Empirical Mode Decomposition, vibration-based analysis, damage detection, signal decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electromechanical impedance (EMI) technique has been successfully used in structural health monitoring (SHM) systems on a wide variety of structures. The basic concept of this technique is to monitor the structural integrity by exciting and sensing a piezoelectric transducer, usually a lead zirconate titanate (PZT) wafer bonded to the structure to be monitored and excited in a suitable frequency range. Because of the piezoelectric effect, there is a relationship between the mechanical impedance of the host structure, which is directly related to its integrity, and the electrical impedance of the PZT transducer, obtained by a ratio between the excitation and the sensing signals.This work presents a study on damage (leaks) detection using EMI based method. Tests were carried out in a rig water system built in a Hydraulic Laboratory for different leaks conditions in a metallic pipeline. Also, it was evaluated the influence of the PZT position bonded to the pipeline. The results show that leaks can effectively be detected using common metrics for damage detection such as RMSD and CCDM. Further, it was observed that the position of the PZT bonded to the pipes is an important variable and has to be controlled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Atrial fibrillation (AF) is common and may have severe consequences. Continuous long-term electrocardiogram (ECG) is widely used for AF screening. Recently, commercial ECG analysis software was launched, which automatically detects AF in long-term ECGs. It has been claimed that such tools offer reliable AF screening and save time for ECG analysis. However, this has not been investigated in a real-life patient cohort. Objective To investigate the performance of automatic software-based screening for AF in long-term ECGs. Methods Two independent physicians manually screened 22,601 hours of continuous long-term ECGs from 150 patients for AF. Presence, number, and duration of AF episodes were registered. Subsequently, the recordings were screened for AF by an established ECG analysis software (Pathfinder SL), and its performance was validated against the thorough manual analysis (gold standard). Results Sensitivity and specificity for AF detection was 98.5% (95% confidence interval 91.72%–99.96%) and 80.21% (95% confidence interval 70.83%–87.64%), respectively. Software-based AF detection was inferior to manual analysis by physicians (P < .0001). Median AF duration was underestimated (19.4 hours vs 22.1 hours; P < .001) and median number of AF episodes was overestimated (32 episodes vs 2 episodes; P < .001) by the software. In comparison to extensive quantitative manual ECG analysis, software-based analysis saved time (2 minutes vs 19 minutes; P < .001). Conclusion Owing to its high sensitivity and ability to save time, software-based ECG analysis may be used as a screening tool for AF. An additional manual confirmatory analysis may be required to reduce the number of false-positive findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of free radical biology and medicine continues to move at a tremendous pace, with a constant flow of ground-breaking discoveries. The following collection of papers in this issue of Biochemical Society Transactions highlights several key areas of topical interest, including the crucial role of validated measurements of radicals and reactive oxygen species in underpinning nearly all research in the field, the important advances being made as a result of the overlap of free radical research with the reinvigorated field of lipidomics (driven in part by innovations in MS-based analysis), the acceleration of new insights into the role of oxidative protein modifications (particularly to cysteine residues) in modulating cell signalling, and the effects of free radicals on the functions of mitochondria, extracellular matrix and the immune system. In the present article, we provide a brief overview of these research areas, but, throughout this discussion, it must be remembered that it is the availability of reliable analytical methodologies that will be a key factor in facilitating continuing developments in this exciting research area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In longitudinal data analysis, our primary interest is in the regression parameters for the marginal expectations of the longitudinal responses; the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly for correlated discrete outcome data. Marginal modeling approaches such as generalized estimating equations (GEEs) have received much attention in the context of longitudinal regression. These methods are based on the estimates of the first two moments of the data and the working correlation structure. The confidence regions and hypothesis tests are based on the asymptotic normality. The methods are sensitive to misspecification of the variance function and the working correlation structure. Because of such misspecifications, the estimates can be inefficient and inconsistent, and inference may give incorrect results. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its characteristics and asymptotic properties. We also provide an algorithm based on EL principles for the estimation of the regression parameters and the construction of a confidence region for the parameter of interest. We extend our approach to variable selection for highdimensional longitudinal data with many covariates. In this situation it is necessary to identify a submodel that adequately represents the data. Including redundant variables may impact the model’s accuracy and efficiency for inference. We propose a penalized empirical likelihood (PEL) variable selection based on GEEs; the variable selection and the estimation of the coefficients are carried out simultaneously. We discuss its characteristics and asymptotic properties, and present an algorithm for optimizing PEL. Simulation studies show that when the model assumptions are correct, our method performs as well as existing methods, and when the model is misspecified, it has clear advantages. We have applied the method to two case examples.