796 resultados para Empirical Algorithm Analysis
Resumo:
The aim of this research was to evaluate the protein polymorphism degree among seventy-five C. albicans strains from healthy children oral cavities of five socioeconomic categories from eight schools (private and public) in Piracicaba city, São Paulo State, in order to identify C. albicans subspecies and their similarities in infantile population groups and to establish their possible dissemination route. Cell cultures were grown in YEPD medium, collected by centrifugation, and washed with cold saline solution. The whole-cell proteins were extracted by cell disruption, using glass beads and submitted to SDS-PAGE technique. After electrophoresis, the protein bands were stained with Coomassie-blue and analyzed by statistics package NTSYS-pc version 1.70 software. Similarity matrix and dendrogram were generated by using the Dice similarity coefficient and UPGMA algorithm, respectively, which made it possible to evaluate the similarity or intra-specific polymorphism degrees, based on whole-cell protein fingerprinting of C. albicans oral isolates. A total of 13 major phenons (clusters) were analyzed, according to their homogeneous (socioeconomic category and/or same school) and heterogeneous (distinct socioeconomic categories and/or schools) characteristics. Regarding to the social epidemiological aspect, the cluster composition showed higher similarities (0.788 < S D < 1.0) among C. albicans strains isolated from healthy children independent of their socioeconomic bases (high, medium, or low). Isolates of high similarity were not found in oral cavities from healthy children of social stratum A and D, B and D, or C and E. This may be explained by an absence of a dissemination route among these children. Geographically, some healthy children among identical and different schools (private and public) also are carriers of similar strains but such similarity was not found among other isolates from children from certain schools. These data may reflect a restricted dissemination route of these microorganisms in some groups of healthy scholars, which may be dependent of either socioeconomic categories or geographic site of each child. In contrast to the higher similarity, the lower similarity or higher polymorphism degree (0.499 < S D < 0.788) of protein profiles was shown in 23 (30.6%) C. albicans oral isolates. Considering the social epidemiological aspect, 42.1%, 41.7%, 26.6%, 23.5%, and 16.7% were isolates from children concerning to socioeconomic categories A, D, C, B, and E, respectively, and geographically, 63.6%, 50%, 33.3%, 33.3%, 30%, 25%, and 14.3% were isolates from children from schools LAE (Liceu Colégio Albert Einstein), MA (E.E.P.S.G. "Prof. Elias de Melo Ayres"), CS (E.E.P.G. "Prof. Carlos Sodero"), AV (Alphaville), HF (E.E.P.S.G. "Honorato Faustino), FMC (E.E.P.G. "Prof. Francisco Mariano da Costa"), and MEP (E.E.P.S.G. "Prof. Manasses Ephraim Pereira), respectively. Such results suggest a higher protein polymorphism degree among some strains isolated from healthy children independent of their socioeconomic strata or geographic sites. Complementary studies, involving healthy students and their families, teachers, servants, hygiene and nutritional habits must be done in order to establish the sources of such colonization patterns in population groups of healthy children. The whole-cell protein profile obtained by SDS-PAGE associated with computer-assisted numerical analysis may provide additional criteria for the taxonomic and epidemiological studies of C. albicans.
Resumo:
Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.
Resumo:
Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Objective: The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. Methods: We present results of a source analysis of interictal spikes from 4 patients (age 2–25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. Results: All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Conclusions: Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.
Resumo:
Objective: The epilepsies associated with the tuberous sclerosis complex (TSC) are very often refractory to medical therapy. Surgery for epilepsy is an effective alternative when the critical link between the localization of seizure onset in the scalp and a particular cortical tuber can be established. In this study we perform analysis of ictal and interictal EEG to improve such link. Methods: The ictal and interictal recordings of four patients with TSC undergoing surgery for epilepsy were submitted to independent component analysis (ICA), followed by source analysis, using the sLORETA algorithm. The localizations obtained for the ictal EEG and for the average interictal spikes were compared. Results: The ICA of ictal EEG produced consistent results in different events, and there was good agreement with the tubers that were successfully removed in three of the four patients (one patient refused surgery). In some patients there was a large discrepancy between the localization of ictal and interictal sources. The interictal activity produced more widespread source localizations. Conclusions: The use of ICA of ictal EEG followed by the use of source analysis methods in four cases of epilepsy and TSC was able to localize the epileptic generators very near the lesions successfully removed in surgery for epilepsy. Significance: The ICA of ictal EEG events may be a useful add-on to the tools used to establish the connection between epileptic scalp activity and the cortical tubers originating it, in patients with TSC considered for surgery of epilepsy.
Resumo:
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
A Masters Thesis, presented as part of the requirements for the award of a Research Masters Degree in Economics from NOVA – School of Business and Economics
Resumo:
Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation
Resumo:
The relative attractiveness of cities as places to live determines population movements in or out of them. Understanding the appealing features of a city is fundamental to local governments, particularly for cities facing population decline. Pull and push attributes of cities can include economic aspects, the availability of amenities and psychological constructs, initiating a discussion around which factors are more relevant in explaining migration. However, a pull–push approach has been underexplored in studies of shrinking cities. In the present study, we contribute to the discussion by identifying pull and push factors in Portuguese shrinking cities. Data were collected using a face-to-face questionnaire survey of 701 residents in four shrinking cities: Oporto, Barreiro, Peso da Régua and Moura. Factor analysis and automatic linear modelling were used to analyse the data. Our results support previous findings that the economic activity of a city is the most relevant feature for retaining residents. However, other characteristics specific to each city, especially those related to heritage and natural beauty, are also shown to influence a city’s attractiveness as a place to live. The cause of population shrinkage is also found to influence residents’ assessments of the pull and push attributes of each city. Furthermore, the results show the relevance of social ties and of place attachment to inhabitants’ intention to continue living in their city of residence.
Resumo:
Ion Mobility Spectrometry coupled with Multi Capillary Columns (MCC -IMS) is a fast analytical technique working at atmospheric pressure with high sensitivity and selectivity making it suitable for the analysis of complex biological matrices. MCC-IMS analysis generates its information through a 3D spectrum with peaks, corresponding to each of the substances detected, providing quantitative and qualitative information. Sometimes peaks of different substances overlap, making the quantification of substances present in the biological matrices a difficult process. In the present work we use peaks of isoprene and acetone as a model for this problem. These two volatile organic compounds (VOCs) that when detected by MCC-IMS produce two overlapping peaks. In this work it’s proposed an algorithm to identify and quantify these two peaks. This algorithm uses image processing techniques to treat the spectra and to detect the position of the peaks, and then fits the data to a custom model in order to separate the peaks. Once the peaks are separated it calculates the contribution of each peak to the data.