936 resultados para Emergence Traps
Resumo:
Eosinophil extracellular traps (EETs) are part of the innate immune response and are seen in multiple infectious, allergic, and autoimmune eosinophilic diseases. EETs are composed of a meshwork of DNA fibers and eosinophil granule proteins, such as major basic protein (MBP) and eosinophil cationic protein (ECP). Interestingly, the DNA within the EETs appears to have its origin in the mitochondria of eosinophils, which had released most their mitochondrial DNA, but were still viable, exhibiting no evidence of a reduced life span. Multiple eosinophil activation mechanisms are represented, whereby toll-like, cytokine, chemokine, and adhesion receptors can all initiate transmembrane signal transduction processes leading to the formation of EETs. One of the key signaling events required for DNA release is the activation of the NADPH oxidase. Here, we review recent progress made in the understanding the molecular mechanisms involved in DNA and granule protein release, discuss the presence of EETs in disease, speculate on their potential role(s) in pathogenesis, and compare available data on other DNA-releasing cells, particularly neutrophils.
Resumo:
Thymic stromal lymphopoietin (TSLP) that is released by epithelial cells upon certain environmental triggers activates cells of the innate and adaptive immune system resulting in a preferential T helper 2 immune response. By releasing eosinophil extracellular traps (EETs), eosinophils achieve an efficient extracellular bacterial killing. Eosinophil extracellular traps release, however, has been observed in both infectious and noninfectious eosinophilic diseases. Here, we aim to investigate whether eosinophils generate functional EETs as a direct response to TSLP, and further to study the extra- and intracellular mechanisms involved in this process as well as TSLP receptor (TSLPR) expression by eosinophils in vitro and in vivo.
Resumo:
IgE antibodies interact with the high affinity IgE Fc receptor, FcεRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcεRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of an IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcεRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.
Resumo:
We report 5 cases of disseminated infection caused by Blastoschizomyces capitatus yeast in central Switzerland. The emergence of this yeast in an area in which it is not known to be endemic should alert clinicians caring for immunocompromised patients outside the Mediterranean region to consider infections caused by unfamiliar fungal pathogens.
Resumo:
Through studying German, Polish and Czech publications on Silesia, Mr. Kamusella found that most of them, instead of trying to objectively analyse the past, are devoted to proving some essential "Germanness", "Polishness" or "Czechness" of this region. He believes that the terminology and thought-patterns of nationalist ideology are so deeply entrenched in the minds of researchers that they do not consider themselves nationalist. However, he notes that, due to the spread of the results of the latest studies on ethnicity/nationalism (by Gellner, Hobsbawm, Smith, Erikson Buillig, amongst others), German publications on Silesia have become quite objective since the 1980s, and the same process (impeded by under funding) has been taking place in Poland and the Czech Republic since 1989. His own research totals some 500 pages, in English, presented on disc. So what are the traps into which historians have been inclined to fall? There is a tendency for them to treat Silesia as an entity which has existed forever, though Mr. Kamusella points out that it emerged as a region only at the beginning of the 11th century. These same historians speak of Poles, Czechs and Germans in Silesia, though Mr. Kamusella found that before the mid-19th century, identification was with an inhabitant's local area, religion or dynasty. In fact, a German national identity started to be forged in Prussian Silesia only during the Liberation War against Napoleon (1813-1815). It was concretised in 1861 in the form of the first Prussian census, when the language a citizen spoke was equated with his/her nationality. A similar census was carried out in Austrian Silesia only in 1881. The censuses forced the Silesians to choose their nationality despite their multiethnic multicultural identities. It was the active promotion of a German identity in Prussian Silesia, and Vienna's uneasy acceptance of the national identities in Austrian Silesia which stimulated the development of Polish national, Moravian ethnic and Upper Silesian ethnic regional identities in Upper Silesia, and Polish national, Czech national, Moravian ethnic and Silesian ethnic identities in Austrian Silesia. While traditional historians speak of the "nationalist struggle" as though it were a permanent characteristic of Silesia, Mr. Kamusella points out that such a struggle only developed in earnest after 1918. What is more, he shows how it has been conveniently forgotten that, besides the national players, there were also significant ethnic movements of Moravians, Upper Silesians, Silesians and the tutejsi (i.e. those who still chose to identify with their locality). At this point Mr. Kamusella moves into the area of linguistics. While traditionally historians have spoken of the conflicts between the three national languages (German, Polish and Czech), Mr Kamusella reminds us that the standardised forms of these languages, which we choose to dub "national", were developed only in the mid-18th century, after 1869 (when Polish became the official language in Galicia), and after the 1870s (when Czech became the official language in Bohemia). As for standard German, it was only widely promoted in Silesia from the mid 19th century onwards. In fact, the majority of the population of Prussian Upper Silesia and Austrian Silesia were bi- or even multilingual. What is more, the "Polish" and "Czech" Silesians spoke were not the standard languages we know today, but a continuum of West-Slavic dialects in the countryside and a continuum of West-Slavic/German creoles in the urbanised areas. Such was the linguistic confusion that, from time to time, some ethnic/regional and Church activists strove to create a distinctive Upper Silesian/Silesian language on the basis of these dialects/creoles, but their efforts were thwarted by the staunch promotion of standard German, and after 1918, of standard Polish and Czech. Still on the subject of language, Mr. Kamusella draws attention to a problem around the issue of place names and personal names. Polish historians use current Polish versions of the Silesian place names, Czechs use current Polish/Czech versions of the place names, and Germans use the German versions which were in use in Silesia up to 1945. Mr. Kamusella attempted to avoid this, as he sees it, nationalist tendency, by using an appropriate version of a place name for a given period and providing its modern counterpart in parentheses. In the case of modern place names he gives the German version in parentheses. As for the name of historical figures, he strove to use the name entered on the birth certificate of the person involved, and by doing so avoid such confusion as, for instance, surrounds the Austrian Silesian pastor L.J. Sherschnik, who in German became Scherschnick, in Polish, Szersznik, and in Czech, Sersnik. Indeed, the prospective Silesian scholar should, Mr. Kamusella suggests, as well as the three languages directly involved in the area itself, know English and French, since many documents and books on the subject have been published in these languages, and even Latin, when dealing in depth with the period before the mid-19th century. Mr. Kamusella divides the policies of ethnic cleansing into two categories. The first he classifies as soft, meaning that policy is confined to the educational system, army, civil service and the church, and the aim is that everyone learn the language of the dominant group. The second is the group of hard policies, which amount to what is popularly labelled as ethnic cleansing. This category of policy aims at the total assimilation and/or physical liquidation of the non-dominant groups non-congruent with the ideal of homogeneity of a given nation-state. Mr. Kamusella found that soft policies were consciously and systematically employed by Prussia/Germany in Prussian Silesia from the 1860s to 1918, whereas in Austrian Silesia, Vienna quite inconsistently dabbled in them from the 1880s to 1917. In the inter-war period, the emergence of the nation-states of Poland and Czechoslovakia led to full employment of the soft policies and partial employment of the hard ones (curbed by the League of Nations minorities protection system) in Czechoslovakian Silesia, German Upper Silesia and the Polish parts of Upper and Austrian Silesia. In 1939-1945, Berlin started consistently using all the "hard" methods to homogenise Polish and Czechoslovakian Silesia which fell, in their entirety, within the Reich's borders. After World War II Czechoslovakia regained its prewar part of Silesia while Poland was given its prewar section plus almost the whole of the prewar German province. Subsequently, with the active involvement and support of the Soviet Union, Warsaw and Prague expelled the majority of Germans from Silesia in 1945-1948 (there were also instances of the Poles expelling Upper Silesian Czechs/Moravians, and of the Czechs expelling Czech Silesian Poles/pro-Polish Silesians). During the period of communist rule, the same two countries carried out a thorough Polonisation and Czechisation of Silesia, submerging this region into a new, non-historically based administrative division. Democratisation in the wake of the fall of communism, and a gradual retreat from the nationalist ideal of the homogeneous nation-state with a view to possible membership of the European Union, caused the abolition of the "hard" policies and phasing out of the "soft" ones. Consequently, limited revivals of various ethnic/national minorities have been observed in Czech and Polish Silesia, whereas Silesian regionalism has become popular in the westernmost part of Silesia which remained part of Germany. Mr. Kamusella believes it is possible that, with the overcoming of the nation-state discourse in European politics, when the expression of multiethnicity and multilingualism has become the cause of the day in Silesia, regionalism will hold sway in this region, uniting its ethnically/nationally variegated population in accordance with the principle of subsidiarity championed by the European Union.
Resumo:
Thirteen spontaneous multiple-antibiotic-resistant (Mar) mutants of Escherichia coli AG100 were isolated on Luria-Bertani (LB) agar in the presence of tetracycline (4 microg/ml). The phenotype was linked to insertion sequence (IS) insertions in marR or acrR or unstable large tandem genomic amplifications which included acrAB and which were bordered by IS3 or IS5 sequences. Five different lon mutations, not related to the Mar phenotype, were also found in 12 of the 13 mutants. Under specific selective conditions, most drug-resistant mutants appearing late on the selective plates evolved from a subpopulation of AG100 with lon mutations. That the lon locus was involved in the evolution to low levels of multidrug resistance was supported by the following findings: (i) AG100 grown in LB broth had an important spontaneous subpopulation (about 3.7x10(-4)) of lon::IS186 mutants, (ii) new lon mutants appeared during the selection on antibiotic-containing agar plates, (iii) lon mutants could slowly grow in the presence of low amounts (about 2x MIC of the wild type) of chloramphenicol or tetracycline, and (iv) a lon mutation conferred a mutator phenotype which increased IS transposition and genome rearrangements. The association between lon mutations and mutations causing the Mar phenotype was dependent on the medium (LB versus MacConkey medium) and the antibiotic used for the selection. A previously reported unstable amplifiable high-level resistance observed after the prolonged growth of Mar mutants in a low concentration of tetracycline or chloramphenicol can be explained by genomic amplification.
Resumo:
Peroxynitrite, a powerful mutagenic oxidant and nitrating species, is formed by the near diffusion-limited reaction of .NO and O2.- during activation of phagocytes. Chronic inflammation induced by phagocytes is a major contributor to cancer and other degenerative diseases. We examined how gamma-tocopherol (gammaT), the principal form of vitamin E in the United States diet, and alpha-tocopherol (alphaT), the major form in supplements, protect against peroxynitrite-induced lipid oxidation. Lipid hydroperoxide formation in liposomes (but not isolated low-density lipoprotein) exposed to peroxynitrite or the .NO and O2.- generator SIN-1 (3-morpholinosydnonimine) was inhibited more effectively by gammaT than alphaT. More importantly, nitration of gammaT at the nucleophilic 5-position, which proceeded in both liposomes and human low density lipoprotein at yields of approximately 50% and approximately 75%, respectively, was not affected by the presence of alphaT. These results suggest that despite alphaT's action as an antioxidant gammaT is required to effectively remove the peroxynitrite-derived nitrating species. We postulate that gammaT acts in vivo as a trap for membrane-soluble electrophilic nitrogen oxides and other electrophilic mutagens, forming stable carbon-centered adducts through the nucleophilic 5-position, which is blocked in alphaT. Because large doses of dietary alphaT displace gammaT in plasma and other tissues, the current wisdom of vitamin E supplementation with primarily alphaT should be reconsidered.
Resumo:
BACKGROUND: Standard first-line combination antiretroviral treatment (cART) against human immunodeficiency virus 1 (HIV-1) contains either a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a ritonavir-boosted protease inhibitor (PI/r). Differences between these regimen types in the extent of the emergence of drug resistance on virological failure and the implications for further treatment options have rarely been assessed. METHODS: We investigated virological outcomes in patients from the Swiss HIV Cohort Study initiating cART between January 1, 1999, and December 31, 2005, with an unboosted PI, a PI/r, or an NNRTI and compared genotypic drug resistance patterns among these groups at treatment failure. RESULTS: A total of 489 patients started cART with a PI, 518 with a PI/r, and 805 with an NNRTI. A total of 177 virological failures were observed (108 [22%] PI failures, 24 [5%] PI/r failures, and 45 [6%] NNRTI failures). The failure rate was highest in the PI group (10.3 per 100 person-years; 95% confidence interval [CI], 8.5-12.4). No difference was seen between patients taking a PI/r (2.7; 95% CI, 1.8-4.0) and those taking an NNRTI (2.4; 95% CI, 1.8-3.3). Genotypic test results were available for 142 (80%) of the patients with a virological treatment failure. Resistance mutations were found in 84% (95% CI, 75%-92%) of patients taking a PI, 30% (95% CI, 12%-54%) of patients taking a PI/r, and 66% (95% CI, 49%-80%) of patients taking an NNRTI (P < .001). Multidrug resistance occurred almost exclusively as resistance against lamivudine-emtricitabine and the group-specific third drug and was observed in 17% (95% CI, 9%-26%) of patients taking a PI, 10% (95% CI, 0.1%-32%) of patients taking a PI/r, and 50% (95% CI, 33%-67%) of patients taking an NNRTI (P < .001). CONCLUSIONS: Regimens that contained a PI/r or an NNRTI exhibited similar potency as first-line regimens. However, the use of a PI/r led to less resistance in case of virological failure, preserving more drug options for the future.