992 resultados para Elemental composition
Resumo:
We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.
Resumo:
Although oceanwarming and acidification are recognized as two major anthropogenic perturbations of today's oceanswe know very little about how marine phytoplankton may respond via evolutionary change.We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidifcation levels. Exponential growth rates were were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean. At the end of a 1-yr temperature selection phase, we conducted a reciprocal assay experiment in which temperature-adapted asexual populations were compared to the respective non-adapted control populations under high temperature, and vice versa (1. Assay Data, Dataset #835336). Mean exponential growth rates ? in treatments subjected to high temperature increased rapidly under all high temperature-CO2 treatment combinations during the temperature selection phase (2. time series, Dataset #835339).