980 resultados para Electron spin resonance
Resumo:
We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.
Resumo:
This thesis summarizes the application of conventional and modern electron paramagnetic resonance (EPR) techniques to establish proximity relationships between paramagnetic metal centers in metalloproteins and between metal centers and magnetic ligand nuclei in two important and timely membrane proteins: succinate:ubiquinone oxidoreductase (SQR) from Paracoccus denitrificans and particulate methane monooxygenase (pMMO) from Methylococcus capsulatus. Such proximity relationships are thought to be critical to the biological function and the associated biochemistry mediated by the metal centers in these proteins. A mechanistic understanding of biological function relies heavily on structure-function relationships and the knowledge of how molecular structure and electronic properties of the metal centers influence the reactivity in metalloenzymes. EPR spectroscopy has proven to be one of the most powerful techniques towards obtaining information about interactions between metal centers as well as defining ligand structures. SQR is an electron transport enzyme wherein the substrates, organic and metallic cofactors are held relatively far apart. Here, the proximity relationships of the metallic cofactors were studied through their weak spin-spin interactions by means of EPR power saturation and electron spin-lattice (T_1) measurements, when the enzyme was poised at designated reduction levels. Analysis of the electron T_1 measurements for the S-3 center when the b-heme is paramagnetic led to a detailed analysis of the dipolar interactions and distance determination between two interacting metal centers. Studies of ligand environment of the metal centers by electron spin echo envelope modulation (ESEEM) spectroscopy resulted in the identication of peptide nitrogens as coupled nuclei in the environment of the S-1 and S-3 centers.
Finally, an EPR model was developed to describe the ferromagnetically coupled trinuclear copper clusters in pMMO when the enzyme is oxidized. The Cu(II) ions in these clusters appear to be strongly exchange coupled, and the EPR is consistent with equilateral triangular arrangements of type 2 copper ions. These results offer the first glimpse of the magneto-structural correlations for a trinuclear copper cluster of this type, which, until the work on pMMO, has had no precedent in the metalloprotein literature. Such trinuclear copper clusters are even rare in synthetic models.
Resumo:
A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.
Resumo:
In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
Electron-spin dynamics in InAs/GaAs heterostructures consisting of a single layer of InAs (1/3-1 monolayer) embedded in (001) and (311)A GaAs matrix was studied by means of time-resolved Kerr rotation spectroscopy. The spin-relaxation time of the submonolayer InAs samples is significantly enhanced, compared with that of the monolayer InAs sample. The electron-spin-relaxation time and the effective g factor in submonolayer samples were found to be strongly dependent on the photogenerated carrier density. The contribution from both the D'yakonov-Perel' mechanism and Bir-Aronov-Pikus mechanism are discussed to interpret the temperature dependence of spin decoherence at various carrier densities.
Resumo:
For an electron spin in coupling with an interacting spin chain via hyperfine-type interaction, we investigate the dynamical evolutions of the pairwise entanglement of the spin chain, and a correlation function joined the electron spin with a pair of chain spins in correspondence to the electron-spin coherence evolution. Both quantities manifest a periodic and a decaying evolution. The entanglement of the spin bath is significant in distinguishing the zero-coherence status exhibited in periodic and decoherence evolutions of the electron spin. The periodical concurrence evolution of the spin bath characterizes the whole system in a coherence-preserving phase, particularly for the case that the associated periodic coherence evolution is predominated by zero value in the infinite chain-length limit, which was often regarded as the realization of decoherence.
Resumo:
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/AlyGa1-yAs/AlxGa1-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.
Resumo:
By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.
Resumo:
The energy dispersion of an electron in a double quantum wire with a diluted magnetic semiconductor barrier in between is calculated. An external magnetic field modifies significantly the energy dispersion of the electron which is different for the two spin states. The conductance exhibits many interesting peaks and dips which are directly related to the energy dispersions of the different electron spin states. These phenomena are attributed to the interwell coupling which can be tuned by the magnetic field due to the s-d exchange interaction.
Resumo:
Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.
Resumo:
By using time-resolved photoluminescence and time-resolved Kerr rotation, we have studied the unique electron spin dynamics in InAs monolayer (ML) and submonolayer (SML), which were sandwiched in GaAs matrix. Under non-resonant excitation, the spin relaxation lifetimes of 3.4 ns and 0.48 ns were observed for 1/3 ML and I ML InAs samples, respectively. More interestingly, the spin lifetime of the 1/3 ML InAs decreased dramatically under resonant excitation, down to 70 ps, while the spin lifetime of the 1 ML sample did not vary much, changing only from 400 to 340 ps. These interesting results come from the different electron-hole interactions caused by different spatial electron-hole correlation, and they provide a direct evidence of the dominant spin relaxation process, i.e. the BAP mechanism. Furthermore, these new results may provide a valuable enlightenment in controlling the spin relaxation and in seeking new material systems for spintronics application.
Resumo:
We investigate theoretically electron spin states in one-dimensional and two-dimensional (2D) hard-wall mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) in a perpendicular magnetic field. The Hamiltonian of the RSOI alone is mathematically equivalent to that of the DSOI alone using an SU(2) spin rotation transformation. Our theoretical results show that the interplay between the RSOI and DSOI results in an effective periodic potential, which consequently leads to gaps in the energy spectrum. This periodic potential also weakens and smoothens the oscillations of the persistent charge current and spin current and results in the localization of electrons. For a 2D ring with a finite width, higher radial modes destroy the periodic oscillations of persistent currents.
Resumo:
We study electron transport through an Aharonov-Bohm (AB) interferometer with a noninteracting quantum dot in each of its arms. Both a magnetic flux phi threading through the AB ring and the Rashba spin-orbit (SO) interaction inside the two dots are taken into account. Due to the existence of the SO interaction, the electrons flowing through different arms of the AB ring will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor, as well as the influence of the magnetic flux, will induce various interesting interference phenomena. We show that the conductance and the local density of states can become spin polarized by tuning the magnetic flux and the Rashba interaction strength. Under certain circumstances, a pure spin-up or spin-down conductance can be obtained when a spin-unpolarized current is injected from the external leads. Therefore, the electron spin can be manipulated by adjusting the Rashba spin-orbit strength and the structure parameters. (c) 2006 American Institute of Physics.
Resumo:
The circular polarization of excitonic luminescence is studied in CdTe/Cd1-xMgxTe quantum wells with excess electrons of low density in an external magnetic field. It is observed that the circular polarization of X and X- emissions has opposite signs and is influenced by the excess electron density. If the electron density is relatively high so that the emission intensity of the negatively charged excitons X- is much stronger than that of the neutral excitons X, a stronger circular polarization degree of both X and X- emissions is observed. We find that the circular polarization of both X- and X emissions is caused by the spin polarization of the excess electrons due to the electron-spin-dependent nature of the formation of X-. If the electron density is relatively low and the emission intensity of X- is comparable to that of X, the circular polarization degree of X and X- emissions is considerably smaller. This fact is interpreted as due to a depolarization of the excess electron spins, which is induced by the spin relaxation of X-.