953 resultados para Electron collisions
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Dissertation to obtain a Master degree in Biotechnology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of s√=7 TeV corresponding to an integrated luminosity of 4.7 fb −1 . Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti- kt algorithm with distance parameters R=0.4 or R=0.6 , and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20≤pjetT<1000 GeV and pseudorapidities |η|<4.5 . The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ( |η|<1.2 ) for jets with 55≤pjetT<500 GeV . For central jets at lower pT , the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjetT>1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low- pT jets at |η|=4.5 . Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.
Resumo:
A measurement is presented of the tt¯ inclusive production cross section in pp collisions at a center-of-mass energy of s√=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb−1. The cross section was obtained using a likelihood discriminant fit and b-jet identification was used to improve the signal-to-background ratio. The inclusive tt¯ production cross section was measured to be 260±1(stat)+22−23(stat)±8(lumi)±4(beam) pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 253+13−15 pb. The tt¯→(e,μ)+jets production cross section in the fiducial region determined by the detector acceptance is also reported.
Resumo:
Measurements of the centrality and rapidity dependence of inclusive jet production in sNN−−−√=5.02 TeV proton--lead (p+Pb) collisions and the jet cross-section in s√=2.76 TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb−1 and 4.0 pb−1, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The p+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval −4.9<η<−3.2 in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum (pT) for minimum-bias and centrality-selected p+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a pT-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all pT at forward rapidities and for large pT at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton--nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton--parton kinematics.
Resumo:
Various differential cross-sections are measured in top-quark pair (tt¯) events produced in proton--proton collisions at a centre-of-mass energy of s√=7 TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4.6 fb−1. The differential cross-sections are presented in terms of kinematic variables of a top-quark proxy referred to as the pseudo-top-quark whose dependence on theoretical models is minimal. The pseudo-top-quark can be defined in terms of either reconstructed detector objects or stable particles in an analogous way. The measurements are performed on tt¯ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton.The cross-section is measured as a function of the transverse momentum and rapidity of both the hadronic and leptonic pseudo-top-quark as well as the transverse momentum, rapidity and invariant mass of the pseudo-top-quark pair system. The measurements are corrected for detector effects and are presented within a kinematic range that closely matches the detector acceptance. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.
Resumo:
This Letter reports evidence of triple gauge boson production pp→W(ℓν)γγ+X, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb−1, collected by the ATLAS detector in 2012. Events are selected using the W boson decay to eν or μν as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.
Resumo:
A measurement of spin correlation in tt¯ production is presented using data collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb−1. The correlation between the top and antitop quark spins is extracted from dilepton tt¯ events by using the difference in azimuthal angle between the two charged leptons in the laboratory frame. In the helicity basis the measured degree of correlation corresponds to Ahelicity=0.38±0.04, in agreement with the Standard Model prediction. A search is performed for pair production of top squarks with masses close to the top quark mass decaying to predominantly right-handed top quarks and a light neutralino, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 191 GeV are excluded at the 95% confidence level.
Resumo:
The transverse polarization of Λ and Λ¯ hyperons produced in proton--proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 μb−1 of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman xF from 5×10−5 to 0.01 and transverse momentum pT from 0.8 to 15 GeV is −0.010±0.005(stat)±0.004(syst) for Λ and 0.002±0.006(stat)±0.004(syst) for Λ¯. It is also measured as a function of xF and pT, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the xF range covered by this mesurement.
Resumo:
The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H→ZZ∗→ℓ+ℓ−ℓ′+ℓ′−, where ℓ,ℓ′=e or μ, are presented. These measurements were performed using pp collision data corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at center-of-mass energies of 7 TeV and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H→ZZ∗→4ℓ signal is observed with a significance of 8.1 standard deviations at 125.36 GeV, the combined ATLAS measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels. The production rate relative to the Standard Model expectation, the signal strength, is measured in four different production categories in the H→ZZ∗→4ℓ channel. The measured signal strength, at this mass, and with all categories combined, is 1.44 +0.40−0.33. The signal strength for Higgs boson production in gluon fusion or in association with tt¯ or bb¯ pairs is found to be 1.7 +0.5−0.4, while the signal strength for vector-boson fusion combined with WH/ZH associated production is found to be 0.3 +1.6−0.9.
Resumo:
Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at sNN−−−√=2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 pb−1 and 0.14 nb−1 , respectively. The jets are identified with the anti-kt algorithm with R=0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32
Resumo:
This article describes a search for high-mass resonances decaying to a pair of photons using a sample of 20.3 fb−1 of pp collisions at s√=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of 2.66 (1.41) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of k/M¯¯¯¯Pl=0.1 (0.01).