953 resultados para Electric automobiles
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.
Resumo:
The interaction of high-intensity laser pulses with matter releases instantaneously ultra-large currents of highly energetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiments in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channeling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser-irradiated thin metallic foils. Laser-driven impulsive fields at the surface of solid targets can be applied for energy-selective ion beam focusing.
Resumo:
The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.