962 resultados para Effective Temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost 10% of all births are preterm and 2.2% are stillbirths globally. Recent research has suggested that environmental factors may be a contributory cause to these adverse birth outcomes. The authors examined the relationship between ambient temperature and preterm birth and stillbirth in Brisbane, Australia between 2005 and 2009 (n = 101,870). They used a Cox proportional hazard model with live birth and stillbirth as competing risks. They also examined if there were periods of the pregnancy where exposure to high temperatures had a greater effect. Exposure to higher ambient temperatures during pregnancy increased the risk of stillbirth. The hazard ratio for stillbirth was 0.3 at 12 °C relative to the reference temperature at 21 °C. The temperature effect was greatest for fetuses of less than 36 weeks of gestation. There was an association between higher temperature and shorter gestation, as the hazard ratio for live birth was 0.96 at 15 °C and 1.02 at 25 °C. This effect was greatest at later gestational ages. The results provide strong evidence of an association between increased temperature and increased risk of stillbirth and shorter gestations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A good faith reading of core international protection obligations requires that states employ appropriate legislative, administrative and judicial mechanisms to ensure the enjoyment of a fair and effective asylum process. Restrictive asylum policies instead seek to ‘denationalize’ the asylum process by eroding access to national statutory, judicial and executive safeguards that ensure a full and fair hearing of an asylum claim. From a broader perspective, the argument in this thesis recognizes hat international human rights depend on domestic institutions for their effective implementation, and that a rights-based international legal order requires that power is limited, whether that power is expressed as an instance of the sovereign right of states in international law or as the authority of governments under domestic constitutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extant literature suggests that community participation is an important ingredient for the successful delivery of post-disaster housing reconstruction projects. Even though policy-makers, international funding bodies and non-governmental organisations broadly appreciate the value of community participation, post-disaster reconstruction practices systematically fail to follow, or align with, existing policy statements. Research into past experiences has led many authors to argue that post-disaster reconstruction is the least successful physically visible arena of international cooperation. Why is the principle of community participation not evident in the veracity of reconstructions already carried out on the ground? This paper discusses and develops the concepts of, and challenges to, community participation and the subsequent negative and positive effects on post-disaster reconstruction projects outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hayabusa, an unmanned Japanese spacecraft, was launched to study and collect samples from the surface of the asteroid 25143 Itokawa. In June 2010, the Hayabusa spacecraft completed it’s seven year voyage. The spacecraft and the sample return capsule (SRC) re-entered the Earth’s atmosphere over the central Australian desert at speeds on the order of 12 km/s. This provided a rare opportunity to experimentally investigate the radiative heat transfer from the shock-compressed gases in front of the sample return capsule at true-flight conditions. This paper reports on the results of observations from a tracking camera situated on the ground about 100 km from where the capsule experienced peak heating during re-entry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background There has been increasing interest in assessing the impacts of temperature on mortality. However, few studies have used a case–crossover design to examine non-linear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature-mortality relationship in China, or what temperature measure is the best predictor of mortality. Objectives To use a distributed lag non-linear model (DLNM) as a part of case–crossover design. To examine the non-linear and distributed lag effects of temperature on mortality in Tianjin, China. To explore which temperature measure is the best predictor of mortality; Methods: The DLNM was applied to a case¬−crossover design to assess the non-linear and delayed effects of temperatures (maximum, mean and minimum) on deaths (non-accidental, cardiopulmonary, cardiovascular and respiratory). Results A U-shaped relationship was consistently found between temperature and mortality. Cold effects (significantly increased mortality associated with low temperatures) were delayed by 3 days, and persisted for 10 days. Hot effects (significantly increased mortality associated with high temperatures) were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions In Tianjin, extreme cold and hot temperatures increased the risk of mortality. Results suggest that the effects of cold last longer than the effects of heat. It is possible to combine the case−crossover design with DLNMs. This allows the case−crossover design to flexibly estimate the non-linear and delayed effects of temperature (or air pollution) whilst controlling for season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of patient-centered care, consumers are becoming more effective managers of their care—in other words, “effective consumers.” To support patients to become effective consumers, a number of strategies to translate knowledge to action (KTA) have been used with varying success. The use of a KTA framework can be helpful to researchers and implementers when framing, planning, and evaluating knowledge translation activities and can potentially lead to more successful activities. This article briefly describes the KTA framework and its use by a team based out of the University of Ottawa to translate evidence-based knowledge to consumers. Using the framework, tailored consumer summaries, decision aids, and a scale to measure consumer effectiveness were created in collaboration with consumers. Strategies to translate the products into action then were selected and implemented. Evaluation of the knowledge tools and products indicates that the products are useful to consumers. Current research is in place to monitor the use of these products, and future research is planned to evaluate the effect of using the knowledge on health outcomes. The KTA framework provides a useful and valuable approach to knowledge translation.