997 resultados para Effective Modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density-functional calculations are performed to explore the relationship between the work function and Young's modulus of RhSi, and to estimate the p-Schottky-barrier height (SBH) at the Si/RhSi(010) interface. It is shown that the Young's modulus and the workfunction of RhSi satisfy the generic sextic relation, proposed recently for elemental metals. The calculated p-SBH at the Si/RhSi interface is found to differ only by 0.04 eV in opposite limits, viz., no-pinning and strong pinning. We find that the p-SBH is reduced as much as by 0.28 eV due to vacancies at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761994]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic Voltage and Frequency Scaling (DVFS) is a very effective tool for designing trade-offs between energy and performance. In this paper, we use a formal Petri net based program performance model that directly captures both the application and system properties, to find energy efficient DVFS settings for CMP systems, that satisfy a given performance constraint, for SPMD multithreaded programs. Experimental evaluation shows that we achieve significant energy savings, while meeting the performance constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics based closed form model for the energy band gap (E-g) and the transport electron effective mass in relaxed and strained 100] and 110] oriented rectangular Silicon Nanowire (SiNW). Our proposed analytical model along 100] and 110] directions are based on the k.p formalism of the conduction band energy dispersion relation through an appropriate rotation of the Hamiltonian of the electrons in the bulk crystal along 001] direction followed by the inclusion of a 4 x 4 Luttinger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions in a relaxed 100] and 110] oriented SiNW. The behaviour of these two parameters in 100] oriented SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] with the former one. In addition, the energy band gap and the effective mass of a strained 110] oriented SiNW has also been formulated. Using this, we compare our analytical model with that of the extracted data using the nearest neighbour empirical tight binding sp(3)d(5)s* method based simulations and has been found to agree well over a wide range of device dimensions and applied strain. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn doping in ZnS nanoplatelets has been shown to induce a structural transition from the wurtzite to the zinc blende phase. We trace the origin of this transition to quantum confinement effects, which shift the valence band maximum of the wurtzite and zinc blende polyrnorphs of ZnS at different rates as a function of the nanocrystal size, arising from different effective hole masses in the two structures. This modifies the covalency associated with Mn incorporation and is reflected in the size-dependent binding energy difference for the two structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In document community support vector machines and naïve bayes classifier are known for their simplistic yet excellent performance. Normally the feature subsets used by these two approaches complement each other, however a little has been done to combine them. The essence of this paper is a linear classifier, very similar to these two. We propose a novel way of combining these two approaches, which synthesizes best of them into a hybrid model. We evaluate the proposed approach using 20ng dataset, and compare it with its counterparts. The efficacy of our results strongly corroborate the effectiveness of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double-stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and the end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus gamma(1) of dsDNA in quantitative agreement with the literature value. The bend angle distribution P(.) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L-p of 43 nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a charged object such as a dendrimer or protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the effective electron mass (EEM) in Nano wires (NWs) of nonlinear optical materials on the basis of newly formulated electron dispersion relation by considering all types of anisotropies of the energy band constants within the framework of k . p formalism. The results for NWs of III-V, ternary and quaternary semiconductors form special cases of our generalized analysis. We have also investigated the EEM in NWs of Bi, IV-VI, stressed Kane type materials, Ge, GaSb and Bi2Te3 by formulating the appropriate 1D dispersion law in each case by considering the influence of energy band constants in the respective cases. It has been found that the 1D EEM in nonlinear optical materials depend on the size quantum numbers and Fermi energy due to the anisotropic spin orbit splitting constant and the crystal field splitting respectively. The 1D EEM is Bi, IV-VI, stressed Kane type semiconductors and Ge also depends on both the Fermi energy and the size quantum numbers which are the characteristic features of such NWs. The EEM increases with increase in concentration and decreasing film thickness and for ternary and quaternary compounds the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral 2-pyridylsulfinamides were shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols in excellent enantioselectivity. Sulfinamide catalysts possessing solitary chirality at the sulfur center produced the product phenethyl alcohol in good enantioselectivity. Diastereomeric sulfinamides possessing chirality at the carbon-bearing nitrogen and at the sulfur of the sulfinamide increased the enantioselectivity of the product alcohols up to >99%. However, there is no effect of the match-mismatch pair of sulfinamide diastereomers on the outcome of the chiral induction of the product phenethyl alcohols. It was conclusively proved that chirality at the sulfur center is mandatory for obtaining good enantioselectivity in the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of DNA (in the bulk solution) and the non-Newtonian effective fluid behavior are considered separately and self-consistently with the fluid motion satisfying the no-slip boundary condition on the surface of the confining geometry in the presence of channel pressure gradients. A different approach has been developed to model DNA in the micro-channel. In this study the DNA is assumed as an elastic chain with its characteristic Young's modulus, Poisson's ratio and density. The force which results from the fluid dynamic pressure, viscous forces and electromotive forces is applied to the elastic chain in a coupled manner. The velocity fields in the micro-channel are influenced by the transport properties. Simulations are carried out for the DNAs attached to the micro-fluidic wall. Numerical solutions based on a coupled multiphysics finite element scheme are presented. The modeling scheme is derived based on mass conservation including biomolecular mass, momentum balance including stress due to Coulomb force field and DNA-fluid interaction, and charge transport associated to DNA and other ionic complexes in the fluid. Variation in the velocity field for the non-Newtonian flow and the deformation of the DNA strand which results from the fluid-structure interaction are first studied considering a single DNA strand. Motion of the effective center of mass is analyzed considering various straight and coil geometries. Effects of DNA statistical parameters (geometry and spatial distribution of DNAs along the channel) on the effective flow behavior are analyzed. In particular, the dynamics of different DNA physical properties such as radius of gyration, end-to-end length etc. which are obtained from various different models (Kratky-Porod, Gaussian bead-spring etc.) are correlated to the nature of interaction and physical properties under the same background fluid environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new data on the strength of oceanic lithosphere along the Ninetyeast Ridge (NER) from two independent methods: spectral analysis (Bouguer coherence) using the fan wavelet transform technique, and spatial analysis (flexure inversion) with the convolution method. The two methods provide effective elastic thickness (T-e) patterns that broadly complement each other, and correlate well with known surface structures and regional-scale features. Furthermore, our study presents a new high resolution database on the Moho configuration, which obeys flexural isostasy, and exhibit regional correlations with the T-e variations. A continuous ridge structure with a much lower T-e value than that of normal oceanic lithosphere provides strong support for the hotspot theory. The derived T-e values vary over the northern (higher T-e similar to 10-20 km), central (anomalously low T-e similar to 0-5 km), and southern (low T-e similar to 5 km) segments of the NER. The lack of correlation of the T-e value with the progressive aging of the lithosphere implies differences in thermo-mechanical setting of the crust and underlying mantle in different parts of the NER, again indicating diversity in their evolution. The anomalously low T-e and deeper Moho (similar to 22 km) estimates of the central NER (between 0.5 degrees N and 17 degrees S) are attributed to the interaction of a hotspot with the Wharton spreading ridge that caused significant thermal rejuvenation and hence weakening of the lithosphere. The higher mechanical strength values in the northern NER (north of 0.5 degrees N) may support the idea of off-ridge emplacement and a relatively large plate motion at the time of volcanism. The low T-e and deeper Moho (similar to 22 km) estimates in the southern part (south of 17 degrees S) suggest that the lithosphere was weak and therefore younger at the time of volcanism, and this supports the idea that the southern NER was emplaced on the edge of the Indian plate. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, flexible, gas barrier material has been synthesized by exfoliating organically modified nano-clays (MMT) in the blends of Surlyn (PEMA) using a copolymer of vinyl alcohol (EVOH) and demonstrated as a gas barrier material. The materials were characterized by Fourier transform infra red (FTIR) and UV-visible spectroscopy, differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and tensile studies. The oxygen and water-vapor permeabilities of the fabricated films were determined by calcium degradation test and a novel permeability setup based on cavity ring down spectroscopy, respectively. Hierarchical simulations of these materials helped us to understand the effect of intermolecular interactions on diffusivities of oxygen and water molecules in these materials. Schottky structured poly(3-hexylthiophene) based organic devices were encapsulated with the fabricated films and aging studies were carried under accelerated conditions. Based on permeability test results and accelerated aging studies, the fabricated PEMA/EVOH/MMT composites were found to be effective in decreasing the permeabilities for gases by about two orders of magnitude and maintaining the lifetime of organic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide nanorods (ZnO NRs) have been synthesized on flexible substrates by adopting a new and novel three-step process. The as-grown ZnO NRs are vertically aligned and have excellent chemical stoichiometry between its constituents. The transmission electron microscopic studies show that these NR structures are single crystalline and grown along the < 001 > direction. The optical studies show that these nanostructures have a direct optical band gap of about 3.34 eV. Therefore, the proposed methodology for the synthesis of vertically aligned NRs on flexible sheets launches a new route in the development of low-cost flexible devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Q criterion (with Q > 1) describes the stability against local, axisymmetric perturbations in a disk supported by rotation and random motion. Most astrophysical disks, however, are under the influence of an external gravitational potential, which can significantly affect their stability. A typical example is a galactic disk embedded in a dark matter halo. Here, we do a linear perturbation analysis for a disk in an external potential and obtain a generalized dispersion relation and the effective stability criterion. An external potential, such as that due to the dark matter halo concentric with the disk, contributes to the unperturbed rotational field and significantly increases its stability. We obtain the values for the effective Q parameter for the Milky Way and for a low surface brightness galaxy, UGC 7321. We find that in each case the stellar disk by itself is barely stable and it is the dark matter halo that stabilizes the disk against local, axisymmetric gravitational instabilities. Thus, the dark matter halo is necessary to ensure local disk stability. This result has been largely missed so far because in practice the Q parameter for a galactic disk is obtained using the observed rotational field that already includes the effect of the halo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

standard Q criterion (with Q > 1) describes the stability against local, axisymmetric perturbations in a disk supported by rotation and random motion. Most astrophysical disks, however, are under the influence of an external gravitational potential, which can significantly affect their stability. A typical example is a galactic disk embedded in a dark matter halo. Here, we do a linear perturbation analysis for a disk in an external potential and obtain a generalized dispersion relation and the effective stability criterion. An external potential, such as that due to the dark matter halo concentric with the disk, contributes to the unperturbed rotational field and significantly increases its stability. We obtain the values for the effective Q parameter for the Milky Way and for a low surface brightness galaxy, UGC 7321. We find that in each case the stellar disk by itself is barely stable and it is the dark matter halo that stabilizes the disk against local, axisymmetric gravitational instabilities. Thus, the dark matter halo is necessary to ensure local disk stability. This result has been largely missed so far because in practice the Q parameter for a galactic disk is obtained using the observed rotational field that already includes the effect of the halo.