938 resultados para EXPLOITATION ECOSYSTEMS
Resumo:
The effect of crab behaviour on shell-use dynamics was analysed, comparing both interference and exploitation behaviours between the hermit crabs Pagurus criniticornis and Pagurus brevidactylus. Although these species exhibited microhabitat separation, with P. criniticornis dominating (100%) in sandy substrates and P. brevidactylus (80%) on rocky shores, they overlapped in the rocky shore/sand interface (P. criniticornis, 53%; P. brevidactylus, 43%). Pagurus criniticornis occupied shells of Cerithium atratum in higher frequencies (84%) than P. brevidactylus (37%), which was hypothesized to be a consequence of competitive interactions combined with their ability to acquire and/or retain this resource. The species P. criniticornis was attracted in larger numbers to simulated gastropod predation events than was P. brevidactylus, which, on the few occasions that it moved before P. criniticornis, tended to be attracted more rapidly. Interspecific shell exchanges between these species were few, suggesting the absence of dominance relationships. The shell-use pattern in this species pair is thus defined by exploitation competition, which is presumed to be intensified in areas of microsympatry. These results differ from other studies, which found that interference competition through interspecific exchanges shapes shell use, indicating that shell partitioning in hermit crabs is dependent on the behaviour of the species involved in the contests.
Resumo:
Euterpe edulis is an endangered species due to palm heart overharvesting, the most important non-timber forest product of the Brazilian Atlantic Forest, and fruit exploitation has been introduced as a low impacting alternative. However, E. edulis is a keystone species for frugivores birds, and even the impact of fruit exploitation needs to be better investigated. Since this species occurs over contrasting habitats, the establishment of site-specific standards and limits for exploitation may also be essential to achieve truly sustainable management. In this context, we sought to investigate how soil chemical composition would potentially affect E. edulis (Arecaceae) palm heart and fruit exploitation considering current standards of management. We studied natural populations found in Restinga Forest and Atlantic Rainforest remnants established within Natural Reserves of Sao Paulo State, SE Brazil, where 10.24 ha permanent plots, composed of a grid of 256 subplots (20 m x 20 m), were located. In each of these subplots, we evaluated soil chemical composition and diameter at breast height of E. edulis individuals. Additionally, we evaluated fruit yield in 2008 and 2009 in 20 individuals per year. The Atlantic Rainforest population had a much higher proportion of larger diameter individuals than the population from the Restinga Forest, as a result of habitat-mediated effects, especially those related to soil. Sodium and potassium concentration in Restinga Forest soils, which have strong negative and positive effect on palm growth, respectively, played a key role in determining those differences. Overall, the number of fruits that could be exploited in the Atlantic Rainforest was four times higher than in Restinga Forest. If current rules for palm heart and fruit harvesting were followed without any restriction to different habitats, Restinga Forest populations are under severe threat, as this study shows that they are not suitable for sustainable management of both fruits and palm heart. Hence, a habitat-specific approach of sustainable management is needed for this species in order to respect the demographic and ecological dynamics of each population to be managed. These findings suggest that any effort to create general management standards of low impacting harvesting may be unsuccessful if the species of interest occur over a wide range of ecosystems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Universidad Técnica Particular de Loja
Resumo:
[EN]Isocitrate Dehydrogenase (IDH) is a key enzyme in the Krebs cycle, being responsible for the production of one of the three CO2 molecules related to cellular respiration. In order to measure the potential CO2 production linked to the marine planktonic community we have adapted an enzymatic methodology. Preliminary results show that different proportions of autotrophs, heterotrophs and mixotrophs and their metabolic pathways, lead to different relationships between potential CO2 emission and potential O2 consumption during cellular respiration. Although more experiments need to be made, this methodology is leading to a better understanding of cellular respiration in marine samples and their impact on the food chain, vertical Carbon flux and the current sequestering capacity for anthropogenic CO2.
Resumo:
Adaptation and acclimation to different temperatures of obligate psychrophilic, facultative psychrophilic and mesophilic yeasts. Production of ω-3 and ω-6 polyunsaturated fatty acids by fermentative way. Obligate psychrophilic, facultative psychrophilic and mesophilic yeasts were cultured in a carbon rich medium at different temperatures to investigate if growth parameters, lipid accumulation and fatty acid composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to lower temperature negatively affected their specific growth rate. Obligate psychrophiles exhibited the highest biomass yield (YX/S), followed by facultative psychrophiles, then by mesophiles. The growth temperature did not influence the YX/S of facultative psychrophiles and mesophiles. Acclimation to lower temperature caused the increase in lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophiles. Similar YL/X were found in both facultative and obligated psychrophiles, suggesting that lipid accumulation is not a distinctive character of adaptation to permanently cold environments. The extent of unsaturation of fatty acids was one major adaptive feature of the yeasts which colonize permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expenses of linoleic acid, whereas it was generally scarce or absent in all the others strains. Increased unsaturation of fatty acids was also an acclimatory response of mesophiles and facultative psychrophiles to lower temperature. It’s well known that omega-3 polyunsaturated fatty acids (PUFAs) display a variety of beneficial effects on various organ systems and diseases, therefore a process for the microbial production of omega-3 PUFAs would be of great interest. This work sought also to investigate if one of the better psychrophilic yeast, Rhodotorula glacialis DBVPG 4785, stimulated by acclamatory responses, produced omega-3 PUFAs. In fact, the adaptation of psychrophilic yeasts to cold niches is related to the production of higher amounts of lipids and to increased unsaturation degree of fatty acids, presumably to maintain membrane fluidity and functionality at low temperatures. Bioreactor fermentations of Rhodotorula glacialis DBVPG 4785 were carried out at 25, 20, 15, 10, 5, 0, and -3°C in a complex medium with high C:N ratio for 15 days. High biomass production was attained at all the temperatures with a similar biomass/glucose yield (YXS), between 0.40 and 0.45, but the specific growth rate of the strain decreased as the temperature diminished. The coefficients YL/X have been measured between a minimum of 0.50 to a maximum of 0.67, but it was not possible to show a clear effect of temperature. Similarly, the coefficient YL/S ranges from a minimum of 0.22 to a maximum of 0.28: again, it does not appear to be any significant changes due to temperature. Among omega-3 PUFAs, only α-linolenic acid (ALA, 18:3n-3) was found at temperatures below to 0°C, while, it’s remarkable, that the worthy arachidonic acid (C20:4,n-6), stearidonic acid (C20:4,n-3) C22:0 and docosahexaenoic acid (C22:6n-3) were produced only at the late exponential phase and the stationary phase of batch fermentations at 0 and -3°C. The docosahexaenoic acid (DHA) is a beneficial omega-3 PUFA that is usually found in fatty fish and fish oils. The results herein reported improve the knowledge about the responses which enable psychrophilic yeasts to cope with cold and may support exploitation of these strains as a new resource for biotechnological applications.
Resumo:
Il paesaggio, e così anche il paesaggio agrario, può essere considerato come segno del rapporto uomo/natura, come costrutto storico che testimonia il succedersi delle diverse civilizzazioni che l'hanno generato, ma anche come spazio per l'immaginazione territoriale, come progetto per il futuro del territorio. In questo lavoro si trattano le relazioni tra questa visione del paesaggio e le forme di produzione e consumo dei prodotti agricoli, nell'ambito delle trasformazioni che l'ambito rurale sta subendo a partire dagli ultimi decenni, tra pressione dell'urbano, da un lato, e abbandono e crisi dell'agricoltura, dall'altro. Particolare attenzione è riservata a quelle esperienze che, attraverso la produzione biologica e lo scambio locale, esprimono un nuovo progetto di territorio, che prende avvio dal contesto rurale ma che pervade anche le città, proponendo anche nuove relazioni tra città e campagna. Nelle reti della filiera corta e dell'economia solidale che si concretizzano soprattutto come esperienze “dal basso”, di autogestione e partecipazione, si diffondono insieme prodotti e valori. In quest'ottica la sostenibilità ambientale non appare più come una fonte di limitazioni e esternalità negative, per dirla con il linguaggio dell'economia, ma diventa un valore aggiunto di appartenenza collettiva (equilibri ecologici, paesaggio) e un'occasione per nuove relazioni sociali e territoriali.
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
Semantic Web technologies are strategic in order to fulfill the openness requirement of Self-Aware Pervasive Service Ecosystems. In fact they provide agents with the ability to cope with distributed data, using RDF to represent information, ontologies to describe relations between concepts from any domain (e.g. equivalence, specialization/extension, and so on) and reasoners to extract implicit knowledge. The aim of this thesis is to study these technologies and design an extension of a pervasive service ecosystems middleware capable of exploiting semantic power, and deepening performance implications.