932 resultados para ENZYME IMMUNOASSAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow injection system for the determination of organophosphate and carbamate pesticides is described. A sensitive fluorescence probe was synthesized and used as the pH indicator to detect the inhibition of the enzyme acetylcholinesterase (ACNE). The percentage inhibition of enzyme activity is correlated to the pesticide concentration. Several parameters influencing the performance of the system are discussed. The detection limits of 3.5, 50, 12 and 25 mug/l for carbofuran, carbaryl, paraoxon and dichlorvos, in pure water, respectively were achieved with an incubation time of 10 min. A complete cycle of analysis, including incubation time, took 14 min. The detection system has been applied to the determination of carbofuran in spiked vegetable juices (Chinese cabbage and cole), achieving recovery values between 93.2 and 107% for Chinese cabbage juice and 108 and 118% for cole juice at the different concentration levels assayed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorimetric assay based on the unique surface plasmon resonance properties of metallic nanoparticles has received considerable attention in bioassay due to its simplicity, high sensitivity, and low cost. Most of colorimetric methods previously reported employed gold nanoparticles (GNPs) as sensing elements. In this work, we develop a sensitive, selective, simple, and label-free colorimetric assay using unmodified silver nanoparticle (AgNP) probes to detect enzymatic reactions. Enzymatic reactions concerning adenosine triphosphate (ATP) dephosphorylation by calf intestine alkaline phosphatase (CLAP) and peptide phosphorylation by protein kinase A (PKA) were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence Of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)(HEMA-co-EDMA) spheres were prepared by emulsifier-free emulsion polymerization, swelling, seed emulsion polymerization and extraction. Then the spheres activated with 2,4,6-trichloro-1,3,5-triazine were functioned with adipohydrazide (AH). After periodate oxidation of its carbohydrate moieties, horseradish peroxidase was immobilized on the hydrazide-functionalized hollow porous poly(HEMA-co-EDMA) spheres. The amount of immobilized enzyme was up to 43.4 mu g of enzyme/g of support. Moreover, the immobilized horseradish peroxidase exhibited high activity and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface plasmon resonance (SPR) biosensor was used for the first time to determine the concentration of ferritin in both HBS-EP buffer and serum. The monoclonal antibody was immobilized on the carboxymethyl dextran-modified gold surface by an amine coupling method. The interaction of antibody with antigen was monitored in real-time. The signal was enhanced by sandwich amplification strategy to improve the sensitivity and specificity of the immunoassay, especially in serum. The linear range of the assay in serum is over 30-200 ng ml with the detection limit of 28 ng ml(-1). The sensitivity, specificity, and reproducibility of the assay are satisfactory. The analyte and enhancement antibody-binding surface could be regenerated by pH 2.0 glycine-HCl buffer and the same antibody-immobilized surface could be used for more than 50 cycles of ferritin binding and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is impossible for surface plasmon resonance to measure directly the binding kinetics between a low-molecular-weight analyte interacting and its immobilized binding partner. Solution competition method was applied to the kinetic study of the interaction between morphine and its antibody. The affinity constant between the antibody of morphine and morphine-BSA immobilized on the sensor chip was also obtained. The result showed that the affinity of polyclonal antibody is stronger than that of monoclonal antibody. And it also indicated that the protein combined with the analyte affected the binding of antibody to antigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated biomolecular interaction analysis instrument (BI-Acore) based on surface plasmon resonance (SPR) has been used to determine human immunoglobulin G (IgG) in real time. Polyclonal anti-human IgG antibody was covalently immobilized to a carboxymethyldextran modified gold film surface. The samples of human IgG prepared in HBS buffer were poured over the immobilized surface. The signal amplification antibody was applied to amplify the response signal. After each measurement, the surface was regenerated with 0.1 mol/L H3PO4. The assay was rapid, requiring only 30 min for antibody immobilization and 20 min for each subsequent process of immune binding, antibody amplification and regeneration. The antibody immobilized surface had good response to human IgG in the range of 0.12-60 nmol/L with a detection limit of 60 pmol/L. The same antibody immobilized surface could be used for more than 110 cycles of binding, amplification and regeneration. The results demonstrate that the sensitivity, specificity and reproducibility of amplified immunoassay using real-time BIA technology are satisfactory.