977 resultados para ELEVATED INTRAOCULAR-PRESSURE
Resumo:
Aim: The aim of this study was to evaluate the practicality and accuracy of tonometers used in routine clinical practice for established keratoconus (KC). Methods: This was a prospective study of 118 normal and 76 keratoconic eyes where intraocular pressure (IOP) was measured in random order using the Goldman applanation tonometer (GAT), Pascal dynamic contour tonometer (DCT), Reichert ocular response analyser (ORA) and TonoPen XL tonometer. Corneal hysteresis (CH) and corneal resistance factor (CRF), as calculated by the ORA, were recorded. Central corneal thickness (CCT) was measured using an ultrasound pachymeter. Results: The difference in IOP values between instruments was highly significant in both study groups (p<0.001). All other IOP measures were significantly higher than those for GAT, except for the Goldmann-correlated IOP (average of the two applanation pressure points) (IOPg) as measured by ORA in the control group and the CH-corrected IOP (corneal-compensated IOP value) (IOPcc) measures in the KC group. CCT, CH and CRF were significantly less in the KC group (p<0.001). Apart from the DCT, all techniques tended to measure IOP higher in eyes with thicker corneas. Conclusion: The DCT and the ORA are currently the most appropriate tonometers to use in KC for the measurement of IOPcc. Corneal factors such as CH and CRT may be of more importance than CCT in causing inaccuracies in applanation tonometry techniques.
Resumo:
The diagnosis and monitoring of ocular disease presents considerable clinical difficulties for two main reasons i) the substantial physiological variation of anatomical structure of the visual pathway and ii) constraints due to technical limitations of diagnostic hardware. These are further confounded by difficulties in detecting early loss or change in visual function due to the masking of disease effects, for example, due to a high degree of redundancy in terms of nerve fibre number along the visual pathway. This thesis addresses these issues across three areas of study: 1. Factors influencing retinal thickness measures and their clinical interpretation As the retina is the principal anatomical site for damage associated with visual loss, objective measures of retinal thickness and retinal nerve fibre layer thickness are key to the detection of pathology. In this thesis the ability of optical coherence tomography (OCT) to provide repeatable and reproducible measures of retinal structure at the macula and optic nerve head is investigated. In addition, the normal physiological variations in retinal thickness and retinal nerve fibre layer thickness are explored. Principal findings were: • Macular retinal thickness and optic nerve head measurements are repeatable and reproducible for normal subjects and diseased eyes • Macular and retinal nerve fibre layer thickness around the optic nerve correlate negatively with axial length, suggesting that larger eyes have thinner retinae, potentially making them more susceptible to damage or disease • Foveola retinal thickness increases with age while retinal nerve fibre layer thickness around the optic nerve head decreases with age. Such findings should be considered during examination of the eye with suspect pathology or in long-term disease monitoring 2. Impact of glucose control on retinal anatomy and function in diabetes Diabetes is a major health concern in the UK and worldwide and diabetic retinopathy is a major cause of blindness in the working population. Objective, quantitative measurements of retinal thickness. particularly at the macula provide essential information regarding disease progression and the efficacy of treatment. Functional vision loss in diabetic patients is commonly observed in clinical and experimental studies and is thought to be affected by blood glucose levels. In the first study of its kind, the short term impact of fluctuations in blood glucose levels on retinal structure and function over a 12 hour period in patients with diabetes are investigated. Principal findings were: • Acute fluctuations in blood glucose levels are greater in diabetic patients than normal subjects • The fluctuations in blood glucose levels impact contrast sensitivity scores. SWAP visual fields, intraocular pressure and diastolic pressure. This effect is similar for type 1 and type 2 diabetic patients despite the differences in their physiological status. • Long-term metabolic control in the diabetic patient is a useful predictor in the fluctuation of contrast sensitivity scores. • Large fluctuations in blood glucose levels and/or visual function and structure may be indicative of an increased risk of development or progression of retinopathy 3. Structural and functional damage of the visual pathway in glaucomatous optic neuropathy The glaucomatous eye undergoes a number of well documented pathological changes including retinal nerve fibre loss and optic nerve head damage which is correlated with loss of functional vision. In experimental glaucoma there is evidence that glaucomatous damage extends from retinal ganglion cells in the eye, along the visual pathway, to vision centres in the brain. This thesis explores the effects of glaucoma on retinal nerve fibre layer thickness, ocular anterior anatomy and cortical structure, and its correlates with visual function in humans. Principal findings were: • In the retina, glaucomatous retinal nerve fibre layer loss is less marked with increasing distance from the optic nerve head, suggesting that RNFL examination at a greater distance than traditionally employed may provide invaluable early indicators of glaucomatous damage • Neuroretinal rim area and retrobulbar optic nerve diameter are strong indicators of visual field loss • Grey matter density decreases at a rate of 3.85% per decade. There was no clear evidence of a disease effect • Cortical activation as measured by fMRI was a strong indicator of functional damage in patients with significant neuroretinal rim loss despite relatively modest visual field defects These investigations have shown that the effects of senescence are evident in both the anterior and posterior visual pathway. A variety of anatomical and functional diagnostic protocols for the investigation of damage to the visual pathway in ocular disease are required to maximise understanding of the disease processes and thereby optimising patient care.
Resumo:
Objective - To evaluate long-term safety of intravitreal ranibizumab 0.5-mg injections in neovascular age-related macular degeneration (nAMD). Design - Twenty-four–month, open-label, multicenter, phase IV extension study. Participants - Two hundred thirty-four patients previously treated with ranibizumab for 12 months in the EXCITE/SUSTAIN study. Methods - Ranibizumab 0.5 mg administered at the investigator's discretion as per the European summary of product characteristics 2007 (SmPC, i.e., ranibizumab was administered if a patient experienced a best-corrected visual acuity [BCVA] loss of >5 Early Treatment Diabetic Retinopathy Study letters measured against the highest visual acuity [VA] value obtained in SECURE or previous studies [EXCITE and SUSTAIN], attributable to the presence or progression of active nAMD in the investigator's opinion). Main Outcome Measures - Incidence of ocular or nonocular adverse events (AEs) and serious AEs, mean change in BCVA from baseline over time, and the number of injections. Results - Of 234 enrolled patients, 210 (89.7%) completed the study. Patients received 6.1 (mean) ranibizumab injections over 24 months. Approximately 42% of patients had 7 or more visits at which ranibizumab was not administered, although they had experienced a VA loss of more than 5 letters, indicating either an undertreatment or that factors other than VA loss were considered for retreatment decision by the investigator. The most frequent ocular AEs (study eye) were retinal hemorrhage (12.8%; 1 event related to study drug), cataract (11.5%; 1 event related to treatment procedure), and increased intraocular pressure (6.4%; 1 event related to study drug). Cataract reported as serious due to hospitalization for cataract surgery occurred in 2.6% of patients; none was suspected to be related to study drug or procedure. Main nonocular AEs were hypertension and nasopharyngitis (9.0% each). Arterial thromboembolic events were reported in 5.6% of the patients. Five (2.1%) deaths occurred during the study, none related to the study drug or procedure. At month 24, mean BCVA declined by 4.3 letters from the SECURE baseline. Conclusions - The SECURE study showed that ranibizumab administered as per a VA-guided flexible dosing regimen recommended in the European ranibizumab SmPC at the investigator's discretion was well tolerated over 2 years. No new safety signals were identified in patients who received ranibizumab for a total of 3 years. On average, patients lost BCVA from the SECURE study baseline, which may be the result of disease progression or possible undertreatment.
Resumo:
To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel blood oxygen saturation measurements using poly-bead solutions of varying concentrations. Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intraocular pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography (Oximetry Module, Imedos Systems, Germany). To simulate light scatter, cells comprising a plastic collar and two plano lenses were filled with solutions of differing concentrations (0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA). The adopted light scatter model showed an artifactual increase in venous optical density ratio (p=0.036), with the 0.004% condition producing significantly higher venous optical density ratio values when compared to images without a cell in place. Spectrophotometric analysis, and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter. © 2013 Elsevier Ltd.
Resumo:
PURPOSE. To assess systemic and ocular vascular reactivity in response to warm and cold provocation in untreated patients with primary open-angle glaucoma and normal control subjects. METHODS. Twenty-four patients with primary open-angle glaucoma and 22 normal control subjects were subjected to a modified cold pressor test involving immersion of the right hand in 40°C warm water followed by 4°C cold water exposure, and finger and ocular blood flow were assessed by means of peripheral laser Doppler flowmetry and retinal flowmetry, respectively. Finger and body temperature as well as intraocular pressure, systemic blood pressure, systemic pulse pressure, heart rate, and ocular perfusion pressure were also monitored. RESULTS. The patients with glaucoma demonstrated an increase in diastolic blood pressure (P = 0.023), heart rate (P = 0.010), and mean ocular perfusion pressure (P = 0.039) during immersion of the tested hand in 40°C water. During cold provocation, the patients demonstrated a significant decrease in finger (P = 0.0003) and ocular blood flow (the parameter velocity measured at the temporal neuroretinal rim area; P = 0.021). Normal subjects did not demonstrate any blood flow or finger temperature changes during immersion of the tested hand in 40°C water (P > 0.05); however, they exhibited increases in systolic blood pressure (P = 0.034) and pulse pressure (P = 0.0009) and a decrease in finger blood flow (P = 0.0001) during cold provocation. In normal subjects, the ocular blood flow was unchanged during high- and low-temperature challenge. CONCLUSIONS. Cold provocation elicits a different blood pressure, and ocular blood flow response in patients with primary open-angle glaucoma compared with control subjects. These findings suggest a systemic autonomic failure and ocular vascular dysregulation in POAG patients.
Resumo:
The etiology of primary open-angle glaucoma (POAG) remains the subject of continuing investigation. Despite the many known risk factors and mechanism of damage, the principal treatment objectives in POAG still consist of reduction of intraocular pressure, which although straightforward in many cases, often leaves the clinician with the question of how far to pursue a sufficiently low pressure to prevent further damage. Other risk factors such as hemodynamic insufficiency due to vascular dysregulation and abnormal blood pressure are often overlooked in the day-to-day practice; their harmful effects for glaucoma are, it seems, more potent at night while the patient sleeps and when clinical investigation is most difficult. Although the status of autonomic nervous system is an important determinant of the systemic hemodynamic parameters, this issue is usually ignored by the clinician in the process of glaucoma diagnosis. Consequently, there is a lack of alternative therapies tailored to address associated systemic risk factors for POAG on a case and chronological basis; this approach could be more effective in preventing the progression and visual loss in selected glaucoma cases. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Aims: To determine the visual outcome following initiation of brimonidine therapy in glaucoma. Methods: 16 newly diagnosed previously untreated glaucoma patients were randomly assigned to either timalal 0.5% or brimanidine 0.2%. Visual acuity, contrast sensitivity (CS), visual fields, intraocular pressure (IOP), blaad pressure, and heart rate were evaluated at baseline and after 3 months. Results: IOP reduction was similar far both groups (p<0.05). Brimanidine improved CS; in the right eye at 6 and 12 cpd (p = 0.043, p = 0.017); in the left eye at 3 and 12 cpd (p = 0.044, p = 0.046). Timolol reduced CS at 18 cpd in the right eye (p = 0.041). There was no change in any other measured parameters. Conclusion: Glaucoma patients exhibit improved CS an initiation of brimanidine therapy.
Resumo:
Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres. © 2014 Spanish General Council of Optometry.
Resumo:
Purpose: To determine the response of retinal vessels to differing durations of flicker light (FL) sitmulation. Methods: We recorded retinal arterial and venous vessel dilation to 12.5 Hz flicker light provocation (Retinal Vessel Analyzer, Imedos Systems) of varying duration (5, 7, 10 and 20 seconds) in twelve healthy young individuals (age range 26-45 yrs). All participants underwent a full ocular examination including intraocular pressure and blood pressure measurements. Results: Maximum dilation (MD) did not show a significant dependence on flicker duration in arteries whereas maximum constriction (MC) did. However, in veins MD significantly increased with flicker duration. Approximately 80-90% of MD in arteries is reached within 10 seconds of flicker light stimulation. Conclusions: The vast majority of arterial dilatory capacity is reached within 10 seconds of flicker light stimulation even though venous dilation continues strongly. Since the MC of arteries shows a significant dependence on flicker duration measurements at two different durations can provide more information about the retinal vascular system than at a single flicker duration alone.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Maintenance of vascular homeostasis is an active process that is dependent on continuous signaling by the quiescent endothelial cells (ECs) that line mature vessels. Defects in vascular homeostasis contribute to numerous disorders of significant clinical impact including hypertension and atherosclerosis. The signaling pathways that are active in quiescent ECs are distinct from those that regulate angiogenesis but are comparatively poorly understood. Here we demonstrate that the previously uncharacterized scaffolding protein Caskin2 is a novel regulator of EC quiescence and that loss of Caskin2 in mice results in elevated blood pressure at baseline. Caskin2 is highly expressed in ECs from various vascular beds both in vitro and in vivo. When adenovirally expressed in vitro, Caskin2 inhibits EC proliferation and migration but promotes survival during hypoxia and nutrient deprivation. Likewise, loss of Caskin2 in vivo promotes increased vascular branching and permeability in mouse and zebrafish models. Caskin2 knockout mice are born in normal Mendelian ratios and appear grossly normal during early adulthood. However, they have consistently elevated systolic and diastolic blood pressure at baseline and significant context-dependent abnormalities in systemic metabolism (e.g., body weight, fat deposition, and glucose homeostasis). Although the precise molecular mechanisms of these effects remain unclear, we have shown that Caskin2 interacts with several proteins known to have important roles in endothelial biology and cardiovascular disease including the serine/threonine phosphatase PP1, the endothelial receptor Tie1, and eNOS, which is a critical regulator of vascular homeostasis. Ongoing work seeks to further characterize the functions of Caskin2 and its mechanisms of action with a focus on how Caskin2-mediated regulation of endothelial phenotype relates to its systemic effects on cardiovascular and metabolic function.
Resumo:
We investigated the effect of elevated partial pressure of CO2 (pCO2) on the photosynthesis and growth of four phylotypes (ITS2 types A1, A13, A2, and B1) from the genus Symbiodinium, a diverse dinoflagellate group that is important, both free-living and in symbiosis, for the viability of cnidarians and is thus a potentially important model dinoflagellate group. The response of Symbiodinium to an elevated pCO2 was phylotype-specific. Phylotypes A1 and B1 were largely unaffected by a doubling in pCO2 in contrast, the growth rate of A13 and the photosynthetic capacity of A2 both increased by ~ 60%. In no case was there an effect of ocean acidification (OA) upon respiration (dark- or light-dependent) for any of the phylotypes examined. Our observations suggest that OA might preferentially select among free-living populations of Symbiodinium, with implications for future symbioses that rely on algal acquisition from the environment (i.e., horizontal transmission). Furthermore, the carbon environment within the host could differentially affect the physiology of different Symbiodinium phylotypes. The range of responses we observed also highlights that the choice of species is an important consideration in OA research and that further investigation across phylogenetic diversity, for both the direction of effect and the underlying mechanism(s) involved, is warranted.
Resumo:
The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a ~260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 (~2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.
Resumo:
The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.
Resumo:
This research presents a new design of an adjustable suture that could provide a better intraocular pressure (IOP) control in the post treatment of trabeculectomy surgery and limit associated complication with the current suturing techniques. A better control in tension suture brings a great deal of advantages to this surgical technique compared with the traditional adjustable suture. A length adjustment can be added in advance to a 10-0 nylon suture which enables suture tension to be released during the postoperative period of trabeculectomy surgery. This adjustment has a D-ring geometry made of 10-0 nylon suture adhered to a 10-0 nylon surgical suture which is used to close the scalar flap. The D ring was adhered with about 180 microdroplet of Loctite 4311that was found to form a strong joint to connect the D ring to the main 10-0 nylon suture and strong enough to carry the added tension instead after cutting the central suture between the two joints of the D ring. The geometry of adjustment is the key factor of maintaining the IOP at the normal range and keeping the scleral flap tight enough and secure so that aqueous humor continues to percolate under the subconjunctiva. It has been found that a 365, and 450 µm length extensions can release suture tension postoperatively and relieve the intraocular pressure within the eye by 33, and 66% respectively. The fabrication process of the new adjustable suture was divided into two steps: fabrication of micro jig and forming microdroplets. A micro jig was fabricated in order to form and bond a precise length extension to the new design of the adjustable suture. In addition, a new liquid separation technique has been followed in this study in order to generate micro adhesive droplets as small as 50µm for bonding the new adjustable suture structure.