784 resultados para ELECTROCHEMICAL POLARIZATION PHENOMENA
Resumo:
Tämän työn tarkoituksena oli jalkauttaa Liqum Oy:n kehittämä Chemistry Navi-gator (Chena) kunnossapidon ja tuotannon päivittäiseksi työkaluksi prosessin märän pään kemian seurantaan. Chena – analysaattorin mittausteknologia perustuu hapetus – pelkistysreaktioiden mittaamiseen. Analysaattori mittaa paperimassassa olevien ionien ja ionikombinaatioiden konsentraatioita ja aktiivisuuksia kuudella anturilla, joiden toiminta perustuu sähkökemiallisiin muutoksiin mitattavassa näytteessä. Diplomityön tarkoituksena oli erityisesti Chena – järjestelmän toimintakuntoon saattaminen sekä tutkia minkälaisia muutoksia märkäosan kemian tilassa analysaattorilla voidaan havaita. Työn kirjallisuusosassa esitellään yleisesti paperikoneen märkäosan kemiallisia ilmiöitä ja kemian tilan muuttujia. Lisäksi esitellään yleisimpiä prosessiin annosteltavia paperin laatuun sekä prosessin toimivuuteen vaikuttavia kemikaaleja. Kokeellisessa osassa optimoitiin järjestelmässä olevien ajoparametrien raja-arvoja vastaamaan nykypäivän ajo-olosuhteita sekä tutkittiin miten Chenan signaalit reagoivat eri massasuhteilla ja kemikaaliannoksilla. Kokeellisen osassa suoritettujen askelvastekokeiden tulosten perusteella havait-tiin, että peroksidi ja ditioniitti antoivat voimakkaimmat vasteet Chenan signaaleihin varsinkin suuremmilla pitoisuuksilla. Myös retentio- ja vaahdonestoaineen osalta oli havaittavissa selviä vasteita Chenan signaaleissa. Massasuhteiden osalta merkittävimmät vasteet Chenan signaaleihin PK4:n puolella aiheuttivat täysin hylytön massaseos sekä puolet kokonaistilavuudesta päällystämätöntä hylkyä sisältänyt massaseos. PK7:n puolella voimakkaimmat vasteet aiheutuivat alhaisen hylkypitoisuuden massoista. Chena avulla saadaan uutta
Resumo:
Electrode kinetics and study of 'transition state' with applied potential in case of [M - antibiotics - cephalothin] system were reported at pH = 7.30 ± 0.01 at suitable supporting electrolyte at 25.0ºC. The M = Co or Ni and antibiotics were doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin and chloramphenicol used as primary ligands and cephalothin as secondary ligand. Kinetic parameters viz. transfer coefficient (a), degree of irreversibility (l), diffusion coefficient (D) and rate constant (k) were determined. The values of a and k varied from 0.41 to 0.59 and 2.60 X 10-3 cm s-1 to 9.67 X 10-3 cm s-1 in case of [Co - antibiotics - cephalothin] system. In case of [Ni - antibiotics - cephalothin], a and k varied from 0.41 to 0.58 and 2.34 X 10-3 cm s-1 to 9.19 X 10-3 cm s-1 respectively confirmed that transition state behaves between oxidant and reductant response to applied potential and it adjusts it self in such a way that the same is located midway between dropping mercury electrode and solution interface. The values of rate constant confirmed the quasireversible nature of electrode processes. The stability constants (logb) of complexes were also determined.
Resumo:
Bis-(µ2-oxo)-tetrakis{[1-feniltriazene-1,3-diil)-2-(phenyltriazenil)benzene copper(II) is a tetranuclear complex which shows four Cu(II) ions coordinated by four 1,2-bis(phenyltriazene)benzene bridged ligands, with one diazoaminic deprotonated chain, and two O2- ligands. The complex reduces at E1/2 = -0.95 V vs Fc+/Fc, a two electrons process. Cyclic voltammetric and spectroelectrochemical studies showed a reversible process. When immobilized on carbon paste electrode, the complex electrocatalyses the reduction of O2 dissolved on aqueous solution at -0.3 V vs SCE potential. The obtained current shows linearity with O2 concentration.
Resumo:
Leibniz's conception of bodies seems to be a puzzling theory. Bodies are seen as aggregates of monads and as wellfounded phenomena. This has initiated controversy and unending discussions. The paper attempts to resolve the apparent inconsistencies by a new and formally spirited reconstruction of Leibniz's theory of monads and perception, on the one hand, and a (re-)formulation and precisation of his concept of preestablished harmony, on the other hand. Preestablished harmony is modelled basically as a covariation between the monadic and the ideal realm.
Resumo:
The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.
Resumo:
In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.
Resumo:
Regulation of cell growth, death, and polarization by ERBB4 ErbB4 is a member of the epidermal growth factor receptor (EGFR, ErbB) family. The other members are EGFR, ErbB2 and ErbB3. ErbB receptors are important regulators for example in cardiovascular, neural and breast development but control key cellular functions also in many adult tissues. Abnormal ErbB signaling has been shown to be involved in various illnesses such as cancers and heart diseases. Among the ErbBs, ErbB4 has been shown to have unique signaling characteristics. ErbB4 exists in four alternatively spliced isoforms that are expressed in a tissue-specific manner. Two of the isoforms can be cleaved by membrane proteases, resulting in release of soluble intracellular domains (ICD). Once released into the cytosol, the ICD is capable of translocating into the nucleus and participating in regulation of transcription. The functional differences and the tissue-specific expression patterns suggest isoformspecific roles for ErbB4 isoforms. However, the abilities of ErbB4 isoforms to differently regulate cellular functions were discovered only recently and are not well understood. This study aimed to determine the expression patterns of ErbB4 in normal and diseased tissue, and to define whether the cleavable and non-cleavable isoforms could regulate different target genes and therefore, cellular functions. In this study, a comprehensive ErbB4 expression pattern in several normal tissues, various cancers and non-neoplastic diseases was determined. In addition, the data demonstrated that the cleavable and non-cleavable ErbB4 isoforms could regulate different cellular functions and target genes. Finally, this study defined the cellular responses regulated by ErbB4 during kidney development.
Resumo:
Vi omges i vardagen av alla sorters plaster, som kemiskt kallas för polymerer. Vi anknyter dem oftast till vardagliga föremål såsom muggar, leksaker eller platskassar. Det finns dock en särklass av polymerer som fås elektriskt ledande genom en så kallad dopningsprocess. Dopning innebär i detta fall oxidation eller reduktion av konjugerade dubbelbindningar i polymerstrukturen. Detta har lett till utveckling av elektriska apparater där dyra, och i vissa fall även sällsynta, metall och halvledarmaterial ersätts genom av elektriskt ledande polymerer (plaster). Utöver elektronisk ledningsförmåga uppvisar dessa polymerer också jonisk ledningsförmåga. Denna kombination av unika egenskaper möjliggör skapandet av t.ex. nya sensormaterial som kan överföra kemisk information till en mätbar elektronisk signal. Detta öppnar i sin tur möjligheter att göra snabba, billiga och känsliga sensorer för bl.a. mediciniska analyser. I denna avhandling karakteriserades elektrokemiskt och spektroelektrokemiskt N- och ring-substituerade polyanilinfilmer. Polyanilin (PANI) hör till de mest studerade elektriskt ledande polymererna. Den är stabil och lätt att framställa. Substituerade polyaniliner har ändå studerats måttligt, mest p.g.a. att substituerade PANIs ledningsförmåga är lägre än PANIs och deras framställning kan vara svår. De nya grupperna i PANI-kedjan ger dock en möjlighet att binda ytterligare molekyler av intresse till PANI-kedjan, som t.ex. jonselektiva grupper. Kovalent bundna selektiva molekyler ger upphov till stabila, känsliga och selektiva sensormaterial. Karakteriseringen av de studerade polymerer är viktig för den fundamentala förståelsen av deras unika egenskaper och för utvecklingen av framtidens sensormaterial. -------------------------------------- Käytämme joka päivä monenlaisia muoveja, joita kutsutaan kemiassa myös polymeereiksi. Olemme tottuneet yhdistämään muovit arkisiin esineisiin kuten mukeihin, leluihin tai muovikasseihin. On kuitenkin olemassa erityisiä polymeerejä, jotka voidaan saada sähköä johtaviksi hapetus- ja pelkistysreaktioiden avulla. Tästä johtuen on kehitteillä sähköisiä laitteita, joissa kalliit ja jossain tapauksissa myös harvinaisia metalleja sisältävät osat ja puolijohteet voidaan korvata johdepolymeereillä (eli muoveilla). Sähkönjohtavuuden lisäksi johdepolymeereillä on myös ionijohtavuutta. Näiden erityislaatuisten ominaisuuksien yhdistelmä on mahdollistanut mm. sensorimateriaalin kehittämisen, sillä kemiallinen tieto voidaan kääntää mitattavaksi sähköiseksi signaaliksi. Tämä taas omalta osaltaan mahdollistaisi nopeiden, halpojen ja herkkien sensorien valmistuksen, mm. diagnostiikkaan. Tässä väitöksessä on tutkittu sähkökemiallisesti valmistettuja N- ja rengassubstituoituja polyaniliinikalvoja. Polyaniliini (PANI) on yksi eniten tutkituista johdepolymeereistä. Se on stabiili ja helppo valmistaa. Substituoidut polyaniliinit ovat herättäneet vain kohtalaista tieteellistä kiinnostusta, lähinnä, koska niiden sähköinen johdekyky on alhaisempi kuin PANIn. Myös niiden valmistus voi olla vaikeaa. Substituoidut molekyylit PANI-ketjussa mahdollistavat kuitenkin, että niihin voi liittää uusia molekyylejä, esim. ioniherkkiä ryhmiä. Kovalentisti sitoutuneilla selektiivisillä molekyyleillä saadaan tehtyä stabiileja, herkkiä ja selektiivisiä sensorimateriaaleja. Väitöksessä käytettyjen polymeerien karakterisointi on tärkeää, jotta niiden erityisominaisuuksia pystyttäisiin ymmärtämään paremmin ja myös kehittämään sopivia tulevaisuuden sensorimateriaaleja.
Resumo:
Electrocoagulation is a process in which wastewater is treated under electrical current. Coagulant is formed during the process through the metal anode dissolution to respective ions which react with hydroxyl ions released in cathode. These metal hydroxides form complexes with pollutant ions. Pollutants are removed among metal hydroxide precipitates. This study was concentrated on describing chemistry and device structures in which electrochemical treatment operations are based on. Studied pollutants were nitrogen compounds, sulphate, trivalent and pentavalent arsenic, heavy metals, phosphate, fluoride, chloride, and bromide. In experimental part, removal of ammonium, nitrate, and sulphate during electrochemical treatment was studied separately. Main objective of this study was to find suitable metal plate material for ammonium, nitrate, and sulphate removal, respectively. Also other parameters such as pH of solution, concentration of pollutant and sodium chloride, and current density were optimized. According to this study the most suitable material for ammonium and sulphate removal by electrochemical treatment was stainless steel. Respectively, iron was the optimum material for nitrate removal. Rise in the pH of solution at the final stage of electrochemical treatment of ammonium, nitrate, and sulphate was detected. Conductivities of solutions decreased during ammonium removal in electrochemical processes. When nitrate and sulphate were removed electrochemically conductivities of solutions increased. Concentrations of residual metals in electrochemically treated solutions were not significant. Based on this study electrochemical treatment processes are recommended to be used in treatment of industrial wastewaters. Treatment conditions should be optimized for each wastewater matrix.
Resumo:
This thesis presents point-contact measurements between superconductors (Nb, Ta, Sn,Al, Zn) and ferromagnets (Co, Fe, Ni) as well as non-magnetic metals (Ag, Au, Cu, Pt).The point contacts were fabricated using the shear method. The differential resistanceof the contacts was measured either in liquid He at 4.2 K or in vacuum in a dilutionrefrigerator at varying temperature down to 0.1 K. The contact properties were investigatedas function of size and temperature. The measured Andreev-reflection spectrawere analysed in the framework of the BTK model – a three parameter model that describescurrent transport across a superconductor - normal conductor interface. Theoriginal BTK model was modified to include the effects of spin polarization or finitelifetime of the Cooper pairs. Our polarization values for the ferromagnets at 4.2 K agree with the literature data, but the analysis was ambiguous because the experimental spectra both with ferromagnets and non-magnets could be described equally well either with spin polarization or finite lifetime effects in the BTK model. With the polarization model the Z parametervaries from almost 0 to 0.8 while the lifetime model produces Z values close to 0.5. Measurements at lower temperatures partly lift this ambiguity because the magnitude of thermal broadening is small enough to separate lifetime broadening from the polarization. The reduced magnitude of the superconducting anomalies for Zn-Fe contacts required an additional modification of the BTK model which was implemented as a scaling factor. Adding this parameter led to reduced polarization values. However, reliable data is difficult to obtain because different parameter sets produce almost identical spectra.
Resumo:
Työn tarkoitus oli tutkia eläinrasvan puhdistusta biodieselin valmistusta varten. Eläinrasvaa syntyy elintarviketeollisuuden sivutuotteena ja sitä saadaan myös myymättä jääneistä elintarvikkeista. Rasva sisältää epäpuhtauksia, jotka on poistettava ennen biodieselprosessia. Tässä työssä tutkittavat epäpuhtaudet ovat typpi, fosfori, rauta, natrium, kalsium ja magnesium. Puhdistusmenetelminä käytettiin saostamista sitruunahapolla sekä adsorbointia kahdella eri adsorbentilla. Tavoitteena oli selvittää riittävä määrä happoa ja adsorbenttia sekä tutkia puhdistuksen mekanismia. Lisäksi tarkasteltiin lämpötilan vaikutusta adsorption aikana.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
The mechanisms by which PM2.5 increases cardiovascular mortality are not fully identified. Autonomic alterations are the current main hypotheses. Our objective was to determine if PM2.5 induces acute cardiac polarization alterations in healthy Wistar rats. PM2.5 samples were collected on polycarbonate filters. Solutions containing 10, 20, and 50 µg PM2.5 were administered by tracheal instillation. P wave duration decreased significantly at 20 µg (0.99 ± 0.06, 0.95 ± 0.06, and 0.96 ± 0.07; P < 0.001), and 50 µg (0.98 ± 0.06, 0.98 ± 0.07, and 0.96 ± 0.08; 60, 90 and 120 min, respectively) compared to blank filter solution (P < 0.001). PR interval duration decreased significantly at 20 µg (0.99 ± 0.06, 0.98 ± 0.07, and 0.97 ± 0.08) and 50 µg (0.99 ± 0.05, 0.97 ± 0.0, and 0.95 ± 0.05; 60, 90, and 120 min, respectively) compared to blank filter and 10 µg (P < 0.001). QRS interval duration decreased at 20 and 50 µg in relation to blank filter solution and 10 µg (P < 0.001). QT interval duration decreased significantly (P < 0.001) with time in animals receiving 20 µg (0.94 ± 0.12, 0.88 ± 0.14, and 0.88 ± 0.11) and 50 µg (1.00 ± 0.13; 0.97 ± 0.11 and 0.98 ± 0.16; 60, 90 and 120 min, respectively) compared to blank filter solution and 10 µg (P < 0.001). PM2.5 induced reduced cardiac conduction time, within a short period, indicating that depolarization occurs more rapidly across ventricular tissue.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.
Resumo:
Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.