864 resultados para Dung roller beetles
Resumo:
Corporate bond appeared early in 1992-1994 in Vietnamese capital markets. However, it is still not popular to both business sector and academic circle. This paper explores different dimensions of Vietnamese corporate bond market using a unique, and perhaps, most complete dataset. State not only intervenes in the bond markets with its powerful budget and policies but also competes directly with enterprises. The dominance of SOEs and large corporations also prevents SMEs from this debt financing vehicle. Whenever a convertible term is available, bondholders are more willing to accept lower fixed income payoff. But they would not likely stick to it. On one hand, prospective bondholders could value the holdings of equity when realized favorably ex ante. On the other hand, the applicable coupon rate for such bond could turn out negative inflationadjusted payoff when tight monetary policy is exercised and the corresponding equity holding turns out valueless, ex post. Given the weak primary market and virtually nonexistent secondary market, the corporate bond market in Vietnam reflects our perception of the relationship-based and rent-seeking behavior in the financial markets. For the corporate bonds to really work, they critically need a higher level of liquidity to become truly tradable financial assets.
Resumo:
In this research, we aim to develop a conceptual framework to assess the entrepreneurial properties of the Vietnamese reform, known as Doi Moi, even before the kickoff of Doi Moi policy itself. We argued that unlike many other scholars’ assertion, economic crisis and harsh realities were neither necessary nor sufficient conditions for the reform to take place, but the entrepreurial elements and undertaking were, at least for case of Vietnam’s reform. Entrepreneurial process on the one hand sought for structural changes, kicked off innovation, and on the other its induced outcome further invited changes and associated opportunities. The paper also concludes that an assessment of possibility for the next stage of Doi Moi in should take into account the entrepreneurial factors of the economy, and by predicting the emergence of new entrepreneurial facets in the next phase of economic development.
Resumo:
info:eu-repo/semantics/published
Resumo:
In this article, we offer a new way of exploring relationships between three different dimensions of a business operation, namely the stage of business development, the methods of creativity and the major cultural values. Although separately, each of these has gained enormous attention from the management research community, evidenced by a large volume of research studies, there have been not many studies that attempt to describe the logic that connect these three important aspects of a business; let alone empirical evidences that support any significant relationships among these variables. The paper also provides a data set and an empirical investigation on that data set, using a categorical data analysis, to conclude that examinations of these possible relationships are meaningful and possible for seemingly unquantifiable information. The results also show that the most significant category among all creativity methods employed in Vietnamese enterprises is the “creative disciplines” rule in the “entrepreneurial phase,” while in general creative disciplines have played a critical role in explaining the structure of our data sample, for both stages of development in our consideration.
Resumo:
In this investigation, we examined 256 cases of financial failure and fraud in Vietnam’s chaotic years from 2007 to 2013. Categorical data analyses suggest that the rent-seeking approach, or resource-based orientation, alone does not help explain the outcome of a business intention while the association between Orientation and Approach is the best-fit predictor. Rampant financial collapse not only increases the cost of funds but also erodes trust in the economy. Entrepreneurship development and creativity capacity building, in light of this, are necessary to improve socio-economic conditions and the environment. In this manuscript, we also introduce intuitive and cognitive factors to predict ex-ante outcome of a financing scheme.
Resumo:
Aims: In kidney transplant recipients (KTR), antibody (Ab) synthesis is hampered by AZA and CsA. We here report in a prospective cohort study, the effects of mycophenolate mofetil (MMF) associated to a calcineurin inhibitor on plasma levels of anti-tetanus anatoxin Ab (TAnAb) and anti-pneumococcal Ab (PnPsAb). Methods: Serum titers of the TAnAb and the PnPsAb against serotypes 14, 19F and 23F were measured in 94 KTR on Day 0 (T0) and 1 year (T12) after renal transplantation and in 49 healthy controls. Results: 1) At T0, TAnAb were detected in only 71% of patients vs. 98% of controls (p < 0.0001) and the titers were significantly lower in KTR (1.46 UI/ml vs. 2.74 in controls, p = 0.01); they further decreased between T0 and T12 (1.46 UI/ml to 0.31, p < 0.0001). The calculated half-life (t1/2) of TAnAb was 7.7 months, as compared to more than 10 years in a normal population. 2) In KTR, PnPsAb titers decreased significantly between T0 and T12 (p < 0.005); the t1/2 of the different PnPsAb ranged from 9.2 to 11.9 months. Conclusions: In KTR treated by MMF and CNI, the TAnAbs and PnPsAbs titers decrease significantly and profoundly during the first year. Immunization pre-transplantation should be encouraged to maintain adequate post-transplant Abs levels.
Resumo:
Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.
Resumo:
The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.
Resumo:
Tree-ring analysis of sub-fossil Pinus sylvestris L. and Quercus sp. and their associated sub-fossil insect assemblages from tree rot holes have been used to study a prehistoric forest buried in the basal peats at Tyrham Hall Quarry, Hatfield Moors SSSI, in the Humberhead Levels, eastern England. The site provided a rare opportunity to examine the date, composition, age structure and entomological biodiversity of a mid-Holocene Pinus-dominated forest. The combined approaches of dendrochronology and palaeoentomology have enabled a detailed picture of the forest to be reconstructed, within a precise time frame. The Pinus chronology has been precisely dated to 2921- 2445 BC against the English Quercus master curve and represents the first English Pinus chronology to be dendrochronologically dated. A suite of important xylophilous (wood-loving) beetles that are today very rare and four species that no longer live within the British Isles were also recovered, their disappearance associated with the decline in woodland habitats as well as possible climate change. The sub-fossil insects indicate that the characteristic species of the site's modern-day fauna were already in place 4000 years ago. These findings have important implications in terms of maintaining long-term invertebrate biodiversity of mire sites.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Resumo:
Social immune systems comprise immune defences mounted by individuals for the benefit of others (sensu Cotter & Kilner 2010a). Just as with other forms of immunity, mounting a social immune response is expected to be costly but so far these fitness costs are unknown. We measured the costs of social immunity in a sub-social burying beetle, a species in which two or more adults defend a carrion breeding resource for their young by smearing the flesh with antibacterial anal exudates. Our experiments on widowed females reveal that a bacterial challenge to the breeding resource upregulates the antibacterial activity of a female's exudates, and this subsequently reduces her lifetime reproductive success. We suggest that the costliness of social immunity is a source of evolutionary conflict between breeding adults on a carcass, and that the phoretic communities that the beetles transport between carrion may assist the beetle by offsetting these costs.
Resumo:
Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.
Resumo:
Warming could strongly stabilize or destabilize populations and food webs by changing the interaction strengths between predators and their prey. Predicting the consequences of warming requires understanding how temperature affects ingestion (energy gain) and metabolism (energy loss). Here, we studied the temperature dependence of metabolism and ingestion in laboratory experiments with terrestrial arthropods (beetles and spiders). From this data, we calculated ingestion efficiencies (ingestion/metabolism) and per capita interaction strengths in the short and long term. Additionally, we investigated if and how body mass changes these temperature dependencies. For both predator groups, warming increased metabolic rates substantially, whereas temperature effects on ingestion rates were weak. Accordingly, the ingestion efficiency (the ratio of ingestion to metabolism) decreased in all treatments. This result has two possible consequences: on the one hand, it suggests that warming of natural ecosystems could increase intrinsic population stability, meaning less fluctuations in population density; on the other hand, decreasing ingestion efficiencies may also lead to higher extinction risks because of starvation. Additionally, predicted long-term per capita interaction strengths decreased with warming, which suggests an increase in perturbation stability of populations, i.e., a higher probability of returning to the same equilibrium density after a small perturbation. Together, these results suggest that warming has complex and potentially profound effects on predator-prey interactions and food-web stability.