954 resultados para Drosophila saltans
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coomassie Brilliant blue dye toxicity screen using Drosophila melanogaster (Diptera - Drosophilidae)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Animal - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Artificial selection for starvation resistance provided insight into the relationships between evolved physiological and life history trait responses following exposure to biologically induced stress. Investigations of alterations to body composition, metabolic rate, movement, and life history traits including development time, female egg production, and longevity in response to brief periods of starvation were conducted on genetically based starvation-resistant and control lines of Drosophila melanogaster. Analysis of the starvation-resistant lines indicated increased energy storage with increased triglyceride deposition and conversion of carbohydrates to lipid, as identified by respiratory quotient values. Correlations between reductions in metabolic rates and movement in the starvation-resistant lines, suggested the presence of an evolved physiological response resulting in energy conservation. Investigations of life history traits in the starvation-resistant lines indicated no significant differences in development time or reproduction between the selected and control lines. Measurements of longevity, however, indicated a significant reduction in starvation-resistant D. melanogaster lifespan. These results suggested that elevated lipid concentrations, similar to that observed with obesity, were correlated with premature mortality. Exposure of the starvation-resistant and control lines to diets supplemented with glucose, palmitic acid, and a 2:1 mixture of casein to albumin were used to investigate alterations in body composition, movement, and life history traits. Results obtained from this study indicated that increased sugar in the diet led to increased carbohydrate, glycogen, total sugar, trehalose, and triglyceride concentrations, while increased fat and protein in the diet resulted in increased soluble protein, carbohydrate, glycogen, total sugar, and trehalose concentrations. Examination of life history trait responses indicated reduced fecundity in females exposed to increased glucose concentrations. Increased supplementations of palmitic acid was consistently correlated with an overall reduction in lifespan in both the starvation-resistant and control Drosophila lines, while measurements of movement indicated increased female activity levels in flies exposed to diets supplemented with fat and protein. Analyses of the physiological and life history trait responses to starvation and dietary supplementation on Drosophila melanogaster used in the present study has implications for investigating the mechanisms underlying the development and persistence of human obesity and associated metabolic disorders.
Resumo:
The classic approach to gene discovery relies on the construction of linkage maps. We report the first molecular-based linkage map for Drosophila mediopunctata, a neotropical species of the tripunctata group. Eight hundred F2 individuals were genotyped at 49 microsatellite loci, resulting in a map that is approximate to 450 centimorgans long. Five linkage groups were detected, and the species' chromosomes were identified through cross-references to BLASTn searches and Muller elements. Strong synteny was observed when compared with the Drosophila melanogaster chromosome arms, but little conservation in the gene order was seen. The incorporation of morphological data corresponding to the number of central abdominal spots on the map was consistent with the expected location of a genomic region responsible for the phenotype on the second chromosome.
Resumo:
Spiroplasma endosymbionts are maternally transmitted bacteria that may kill infected sons resulting in the production of female-biased broods. The prevalence of male killers varies considerably both between and within species. Here, we evaluate the spatial and temporal status of male-killing and non-male-killing Spiroplasma infection in three Brazilian populations of Drosophila melanogaster, nearly a decade after the first occurrence report for this species. The incidence of the male-killing Spiroplasma ranged from close to 0 to 17.7 % (so far the highest estimate for a Drosophila species) with a suggestion of temporal decline in a population. We also found non-male-killing Spiroplasma coexisting in one population at lower prevalence (3-5 %), and we did not detect it in the other two. This may be taken as a suggestion of a spreading advantage conferred by the male-killing strategy. Sequencing two loci, we identified the phylogenetic position of Spiroplasma strains from the three localities, showing that all strains group closely in the poulsonii clade. Due to intensive sampling effort, we were able to test the association between Spiroplasma infections and another widespread endosymbiont, Wolbachia, whose prevalence ranged from 81.8 to 100 %. The prevalence of Wolbachia did not differ between Spiroplasma-infected and uninfected strains in our largest sample nor were the prevalences of the two endosymbionts associated across localities.
Resumo:
This study investigated the immunodetection of PTCH in epithelial components of dental follicles associated with impacted third molars without radiographic signs of pathosis. One hundred and five specimens of dental follicles associated with impacted third molars with incomplete rhizogenesis (between Nolla's stage 6 and 9) were surgically removed from 56 patients. Epithelial cell proliferation was determined by using immunohistochemical labeling. Statistical analysis was performed using Fisher exact test and a level of significance of 5%. Of the 105 dental follicles collected, 3 were PTCH-positive. The specimens with squamous metaplasia and epithelial hyperplasia had higher rates of positivity for PTCH, as well as those with active remnants of odontogenic epithelium. This study suggests that the odontogenic cells of the dental follicle might be proliferating during the rhizogenesis, while the squamous metaplasia and hyperplasia of the epithelial lining and proliferative odontogenic epithelial rests show the differentiation potential of dental follicles.
Resumo:
Larval tissues undergo programmed cell death (PCD) during Drosophila metamorphosis. PCD is triggered in a stage and tissue-specific fashion in response to ecdysone pulses. The understanding of how ecdysone induces the stage and tissue-specificity of cell death remains obscure. Several steroid-regulated primary response genes have been shown to act as key regulators of cellular responses to ecdysone by inducing a cascade of transcriptional regulation of late responsive genes. In this article, the authors identify Fhos as a gene that is required for Drosophila larval salivary gland destruction. Animals with a P-element mutation in Fhos possess persistent larval salivary glands, and precise excisions of this P-element insertion resulted in reversion of this salivary gland mutant phenotype. Fhos encodes the Drosophila homolog of mammalian Formin Fhos. Fhos is differentially transcribed during development and responds to ecdysone in a method that is similar to other cell death genes. Similarly to what has been shown for its mammalian counterpart, FHOS protein is translocated to the nucleus at later stages of cell death. Fhos mutants posses disrupted actin cytoskeleton dynamics in persistent salivary glands. Together, our data indicate that Fhos is a new ecdysone-regulated gene that is crucial for changes in the actin cytoskeleton during salivary gland elimination in Drosophila. genesis 50:672684, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Musca domestica larvae present two different digestive chymotryptic activities found in the posterior midgut (PMG): one major soluble activity in the lumen and another minor present in cell membrane fractions. Both soluble and membrane-bound chymotryptic activities have different half lives of thermal inactivation (46 degrees C) in the presence and absence of 10 mM Triton X-100, indicating that they are two different molecular species. Purified soluble chymotryptic activity has pH optimum 7.4 and a molecular mass of 28 kDa in SDS-PAGE. It does not cleave short substrates, such as Suc-F-MCA, preferring longer substrates, such as Suc-AAPF-MCA, with a primary specificity (kcat/Km) for Phe rather than Tyr and Leu residues. In-gel activity revealed a unique band against S-AAPF-MCA with the same migration as purified chymotrypsin. One chymotrypsinogen-like sequence (MdChy1) was sequenced, cloned and recombinantly expressed in Escherichia coli (DE3) Star. MdChy1 is expressed in the proximal posterior midgut (PMG1), as seen by RT-PCR. Expression analysis of other chymotrypsin genes revealed genes expressed at the anterior midgut (AMG) and PMG. Western blot of M. domestica midgut tissues using anti-MdChy1 antiserum showed a single band in samples from AMG and PMG, co-migrating with recombinant and purified enzymes. Immunogold labeling corresponding to Mdchy1 was found in small vesicles (thus indicating exocytosis) and in the lumen of AMG and PMG, corroborating the existence of two similar groups of chymotrypsins. Transcriptomes of M. domestica AMG and whole midgut prepared by pyrosequencing disclosed 41 unique sequences of chymotrypsin-like enzymes (19 probably functional), from which MdChy1 is highly expressed. Phylogenetic reconstruction of Drosophila melanogaster and M. domestica chymotrypsin-like sequences revealed that the chymotrypsin genes expanded before the evolutionary separation of Musca and Drosophila. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Spontaneous crossing over in males of Drosophila ananassae has been well demonstrated using F-1 individuals from crosses between marker stocks and wild type strains. However, the question of its occurrence in males from natural populations remained open. Here we present the cytological evidence that crossing over does occur in males of D. ananassae from two Brazilian populations, sampled nearly 21 years apart, and in two recently sampled populations, one from Indonesia and one from Okinawa, Japan. Cytological analysis of meiosis in males collected from nature and in sons of females from the same population inseminated in nature revealed the presence of chiasmata, inversion chiasmata, and isosite chromosome breakages in the diplotene cells in all sampled populations. These data demonstrate that reciprocal and nonreciprocal exchanges and chromosome breakages, previously reported as related events of male crossing over, do occur at variable frequencies among males from natural populations.