935 resultados para Dominância cerebral - Teses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo enquadra-se numa avaliação da importância da relação escola/família no processo de inclusão de crianças com Paralisia Cerebral em contexto de Creche. Além dos profissionais especializados contribuírem para o desenvolvimento de crianças com Paralisia Cerebral, a família assume um papel fulcral. A intervenção da família é assim essencial no processo de desenvolvimento/inclusão destas crianças ao longo da vida. Nesse sentido, destacamos como objetivos primordiais: identificar o envolvimento da família e as dinâmicas relacionais com vista ao desenvolvimento pessoal e social da criança, aferir as relações interpessoais dos técnicos e professores que lidam com a inclusão de crianças com PC, perceber a perspetiva que os terapeutas têm acerca da inclusão de crianças com PC, conhecer as conceções dos educadores/professores sobre inclusão, saber como a PC é integrada em Creche, identificar a ação dos pais e da escola na inclusão de uma criança com PC e identificar a articulação do educador/professor com os pais e vice-versa. Para a realização deste estudo, optou-se por utilizar uma metodologia de natureza qualitativa – estudo de caso. Realizaram-se entrevistas semiestruturadas aos intervenientes no processo de desenvolvimento da criança (pais, educadores/professores, terapeutas) para recolher dados. A informação obtida foi apurada mediante análise de conteúdo dessas mesmas entrevistas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A inclusão de crianças com Necessidades Educativas Especiais tem sido uma problemática abordada ao longo dos tempos, questão essa que se mantém nos dias de hoje no sentido de alcançar um ensino de qualidade para todos os alunos, mesmo os que apresentam características distintas, alcançando assim uma Escola Inclusiva. Lidar com crianças portadoras desta problemática num contexto de turma, onde os programas e currículos são extensos e trabalhosos não é tarefa fácil. Assim sendo, é necessário incluir no currículo destes alunos as Novas Tecnologias de Informação e Comunicação(NTIC). Estas são encaradas como uma ferramenta preciosa porque permitem desobstruir barreiras de aprendizagem em alunos com problemas motores e de linguagem. A presente investigação pretende responder à questão: Qual a perceção dos professores do 2º e 3º ciclo acerca da importância das Tecnologias de Informação e Comunicação (TIC) no desenvolvimento cognitivo de crianças com paralisia cerebral (PC)? Desta forma, trata-se de um estudo de caso acerca de um aluno que é portador de PC. O estudo é de carácter qualitativo e quantitativo, uma vez que foram realizadas entrevistas questionários. Na análise dos resultados, aferiu-se que os professores consideram as TIC uma maisvalia no desenvolvimento cognitivo de crianças com paralisia cerebral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este Trabalho de Projecto serve para obtenção do grau de Mestre em Ciências da Educação – Educação Especial: Domínio Cognitivo e Motor. A pertinência desta investigação - acção esteve relacionada com o facto de exercer funções como Professora de Educação Especial numa turma de 1º Ciclo, a qual integrava uma aluna com Paralisia Cerebral que embora aceite pelos seus pares, não estava incluída como elemento pertencente à turma, trabalhando esporadicamente com os seus pares, não fazendo trabalho diferenciado mas outro diferente. Procedemos a uma revisão bibliográfica envolvendo o tema da Educação Inclusiva, da Aprendizagem Cooperativa e da problemática acerca da Paralisia Cerebral. Em termos de técnicas de investigação utilizámos a pesquisa documental, a entrevista semi-directiva e a sociometria. O pretendido foi o de criar um espírito de escola, que se pudesse exprimir pela qualidade das relações interpessoais, pela transmissão implícita ou explícita de atitudes e valores, consolidado em estratégias de aprendizagem cooperativa, no sentido de promover um sólido contexto educativo inclusivo, numa vertente de um trabalho com e para todos os alunos do grande grupo, em sessões semanais. Os alunos considerados com necessidades educativas especiais, a inclusão e a diferenciação pedagógica constituem-se num móbil impulsionador, susceptível de conduzir a respostas assertivas e emergentes, conducentes à autonomia, ao sucesso e à participação na vida activa, o que garante uma melhor qualidade de vida. A análise realizada à informação recolhida, após a intervenção, permite afirmar que a qualidade das relações interpessoais, na turma e na comunidade educativa do Agrupamento, melhorou com a aplicação de práticas pedagógicas inclusivas e cooperativas, que muito contribuíram para o sucesso educativo de todos os alunos da turma - alvo da nossa intervenção. O desafio, neste Trabalho de Projecto, foi o de organizar o ensino e a aprendizagem para todos, com todos os alunos, em parceria pedagógica com a professora da turma, independentemente das dificuldades de alguns, o que implicou partir do princípio de que a heterogeneidade do grupo é uma mais-valia para todos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an overview of some of the latest developments in the field of cerebral cortex to computer interfacing (CCCI) is given. This is posed in the more general context of Brain-Computer Interfaces in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bidirectionally with technology and the internet. A view is taken as to the prospects for the future for CCCI, in terms of its broad therapeutic role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke is a major cause of death and disability, which involves excessive glutamate receptor activation leading to excitotoxic cell death. We recently reported that SUMOylation can regulate kainate receptor (KAR) function. Here we investigated changes in protein SUMOylation and levels of KAR and AMPA receptor subunits in two different animal stroke models: a rat model of focal ischemia with reperfusion and a mouse model without reperfusion. In rats, transient middle cerebral artery occlusion (MCAO) resulted in a striatal and cortical infarct. A dramatic increase in SUMOylation by both SUMO-1 and SUMO-2/3 was observed at 6h and 24h in the striatal infarct area and by SUMO-2/3 at 24h in the hippocampus, which was not directly subjected to ischemia. In mice, permanent MCAO resulted in a selective cortical infarct. No changes in SUMOylation occurred at 6h but there was increased SUMO-1 conjugation in the cortical infarct and non-ischemic hippocampus at 24h after MCAO. Interestingly, SUMOylation by SUMO-2/3 occurred only outside the infarct area. In both rat and mouse levels of KARs were only decreased in the infarct regions whereas AMPARs were decreased in the infarct and in other brain areas. These results suggest that posttranslational modification by SUMO and down-regulation of AMPARs and KARs may play important roles in the pathophysiological response to ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: O acidente vascular encefálico hemorrágico e a hemorragia subaracnóide são doenças de elevada morbi-mortalidade. Os produtos da degradação da hemoglobina são implicados em diversos estudos experimentais como elementoschave na fisiopatologia da lesão secundária após a hemorragia intracraniana. Entretanto, há poucos dados em humanos que possam corroborar as observações experimentais. Objetivo: Avaliar o papel dos produtos da degradação da hemoglobina e dos mecanismos de proteção contra a hemoglobina e o heme na fisiopatologia do dano secundário à hemorragia intracraniana. Métodos: Estudo prospectivo realizado nas unidades neurointensivas de três hospitais. Foi coletado sangue e líquor (pela DVE) de pacientes internados com AVEh ou HSA e hemoventrículo durante os primeiros três dias após o ictus. Foram dosadas sequencialmente as concentrações de ferro, heme, hemopexina, haptoglobina, enolase e S100-\03B2 além de um painel de citocinas. O desfecho primário era mortalidade em 7 dias Resultados: Quinze pacientes foram incluídos, 10 com HSA e 5 com AVEh. Após a hemorragia intracraniana, ocorreu o desencadeamento da resposta inflamatória no sistema nervoso central (SNC), com níveis de IL-8 e GM-CSF no líquor cerca de 20x superiores ao do plasma. Foi observada a correlação entre a concentração de ferro e IP-10 no líquor (r=0,97; p=0,03) e heme e MIP-1b no líquor (r=0,76; p=0,01). Os níveis de hemopexina e haptoglobina foram consistentemente inferiores no líquor em relação ao plasma, ao longo dos três dias de estudo. Tanto o ferro e heme plasmáticos, quanto o grau de resposta inflamatória sistêmica e no SNC foram preditores de mortalidade nos primeiros 7 dias após o evento. Conclusão: Os resultados desse estudo mostram que tanto o ferro quanto o heme estão correlacionados ao desencadeamento da lesão secundária após a hemorragia intracraniana e estão associados ao pior prognóstico neste grupo de pacientes. Além disso, os mecanismos de proteção cerebral contra a hemoglobina e o heme são insuficientes. Mais estudos são necessários para elucidar o papel dos produtos da degradação da hemoglobina na fisiopatologia da hemorragia intracraniana em humanos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: In cerebral arteries, nitric oxide (NO) release plays a key role in suppressing vasomotion. Our aim was to establish the pathways affected by NO in rat middle cerebral arteries. Methods: In isolated segments of artery, isometric tension and simultaneous measurements of either smooth muscle membrane potential or intracellular [Ca 2+ ] ([Ca 2+ ] SMC ) changes were recorded. Results: In the absence of L -NAME, asynchronous propagating Ca 2+ waves were recorded that were sensitive to block with ryanodine, but not nifedipine. L -NAME stimulated pronounced vasomotion and synchronous Ca 2+ oscillations with close temporal coupling between membrane potential, tone and [Ca 2+ ] SMC . If nifedipine was applied together with L -NAME, [Ca 2+ ] SMC decreased and synchronous Ca 2+ oscillations were lost, but asynchronous propagating Ca 2+ waves persisted. Vasomotion was similarly evoked by either iberiotoxin, or by ryanodine, and to a lesser extent by ODQ. Exogenous application of NONOate stimulated endothelium-independent hyperpolarization and relaxation of either L -NAME-induced or spontaneous arterial tone. NO-evoked hyperpolarization involved activation of BK Ca channels via ryanodine receptors (RYRs), with little involvement of sGC. Further, in whole cell mode, NO inhibited current through L-type voltage-gated Ca 2+ channels (VGCC), which was independent of both voltage and sGC. Conclusion: NO exerts sGC-independent actions at RYRs and at VGCC, both of which normally suppress cerebral artery myogenic tone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently found block of NO synthase in rat middle cerebral artery caused spasm, associated with depolarizing oscillations in membrane potential (Em) similar in form but faster in frequency (circa 1 Hz) to vasomotion. T-type voltage-gated Ca2+ channels contribute to cerebral myogenic tone and vasomotion, so we investigated the significance of T-type and other ion channels for membrane potential oscillations underlying arterial spasm. Smooth muscle cell membrane potential (Em) and tension were measured simultaneously in rat middle cerebral artery. NO synthase blockade caused temporally coupled depolarizing oscillations in cerebrovascular Em with associated vasoconstriction. Both events were accentuated by block of smooth muscle BKCa. Block of T-type channels or inhibition of Na+/K+-ATPase abolished the oscillations in Em and reduced vasoconstriction. Oscillations in Em were either attenuated or accentuated by reducing [Ca2+]o or block of KV, respectively. TRAM-34 attenuated oscillations in both Em and tone, apparently independent of effects against KCa3.1. Thus, rapid depolarizing oscillations in Em and tone observed after endothelial function has been disrupted reflect input from T-type calcium channels in addition to L-type channels, while other depolarizing currents appear to be unimportant. These data suggest that combined block of T and L-type channels may represent an effective approach to reverse cerebral vasospasm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NO/prostanoid independent, EDHF-mediated hyperpolarization and dilation in rat middle cerebral arteries is mediated solely by endothelial cell IK(Ca). However, when the NO-pathway is also active, both SK(Ca) and IK(Ca) contribute to EDHF responses. As the SK(Ca) component can be inhibited by stimulation of thromboxane A(2) (TxA(2)) TP receptors and NO has the potential ability to inhibit thromboxane synthesis, we investigated whether TxA(2) might explain loss of functional input from SK(Ca) during NOS inhibition in cerebral arteries. EXPERIMENTAL APPROACH: Rat middle cerebral arteries were mounted in a wire myograph. Endothelium-dependent responses to the PAR2 agonist, SLIGRL were assessed as simultaneous changes in smooth muscle membrane potential and tension. KEY RESULTS: Responses were obtained in the presence of L-NAME as appropriate. Inhibition of TP receptors with either ICI 192,605 or SQ 29,548, did not affect EDHF mediated hyperpolarization and relaxation, but in their presence neither TRAM-34 nor apamin (to block IK(Ca) and SK(Ca) respectively) individually affected the EDHF response. However, in combination they virtually abolished it. Similar effects were obtained in the presence of the thromboxane synthase inhibitor, furegrelate, which additionally revealed an iberiotoxin-sensitive residual EDHF hyperpolarization and relaxation in the combined presence of TRAM-34 and apamin. CONCLUSIONS AND IMPLICATIONS: In the rat middle cerebral artery, inhibition of NOS leads to a loss of the SK(Ca) component of EDHF responses. Either antagonism of TP receptors or block of thromboxane synthase restores an input through SK(Ca). These data indicate that NO normally enables SK(Ca) activity in rat middle cerebral arteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS: SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS: In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose— Endothelium-derived hyperpolarizing factor (EDHF) and K+ are vasodilators in the cerebral circulation. Recently, K+ has been suggested to contribute to EDHF-mediated responses in peripheral vessels. The EDHF response to the protease-activated receptor 2 ligand SLIGRL was characterized in cerebral arteries and used to assess whether K+ contributes as an EDHF. Methods— Rat middle cerebral arteries were mounted in either a wire or pressure myograph. Concentration-response curves to SLIGRL and K+ were constructed in the presence and absence of a variety of blocking agents. In some experiments, changes in tension and smooth muscle cell membrane potential were recorded simultaneously. Results— SLIGRL (0.02 to 20 μmol/L) stimulated concentration and endothelium-dependent relaxation. In the presence of NG-nitro-L-arginine methyl ester, relaxation to SLIGRL was associated with hyperpolarization and sensitivity to a specific inhibitor of IKCa, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (1μmol/L), reflecting activation of EDHF. Combined inhibition of KIR with Ba2+ (30μmol/L) and Na+/K+-ATPase with ouabain (1 μmol/L) markedly attenuated the relaxation to EDHF. Raising extracellular [K+] to 15 mmol/L also stimulated smooth muscle relaxation and hyperpolarization, which was also attenuated by combined application of Ba2+ and ouabain. Conclusions— SLIGRL evokes EDHF-mediated relaxation in the rat middle cerebral artery, underpinned by hyperpolarization of the smooth muscle. The profile of blockade of EDHF-mediated hyperpolarization and relaxation supports a pivotal role for IKCa channels. Furthermore, similar inhibition of responses to EDHF and exogenous K+ with Ba2+ and ouabain suggests that K+ may contribute as an EDHF in the middle cerebral artery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In rat middle cerebral and mesenteric arteries the KCa2.3 component of endothelium-dependent hyperpolarization (EDH) is lost following stimulation of thromboxane (TP) receptors, an effect that may contribute to the endothelial dysfunction associated with cardiovascular disease. In cerebral arteries, KCa2.3 loss is associated with NO synthase inhibition, but is restored if TP receptors are blocked. The Rho/Rho kinase pathway is central for TP signalling and statins indirectly inhibit this pathway. The possibility that Rho kinase inhibition and statins sustain KCa2.3 hyperpolarization was investigated in rat middle cerebral arteries (MCA). Methods: MCAs were mounted in a wire myograph. The PAR2 agonist, SLIGRL was used to stimulate EDH responses, assessed by simultaneous measurement of smooth muscle membrane potential and tension. TP expression was assessed with rt-PCR and immunofluorescence. Results: Immunofluorescence detected TP in the endothelial cell layer of MCA. Vasoconstriction to the TP agonist, U46619 was reduced by Rho kinase inhibition. TP receptor stimulation lead to loss of KCa2.3 mediated hyperpolarization, an effect that was reversed by Rho kinase inhibitors or simvastatin. KCa2.3 activity was lost in L-NAME-treated arteries, but was restored by Rho kinase inhibition or statin treatment. The restorative effect of simvastatin was blocked after incubation with geranylgeranyl-pyrophosphate to circumvent loss of isoprenylation. Conclusions: Rho/Rho kinase signalling following TP stimulation and L-NAME regulates endothelial cell KCa2.3 function. The ability of statins to prevent isoprenylation and perhaps inhibit of Rho restores/protects the input of KCa2.3 to EDH in the MCA, and represents a beneficial pleiotropic effect of statin treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium(KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized 14C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition,loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral palsy (CP) includes a broad range of disorders, which can result in impairment of posture and movement control. Brain-computer interfaces (BCIs) have been proposed as assistive devices for individuals with CP. Better understanding of the neural processing underlying motor control in affected individuals could lead to more targeted BCI rehabilitation and treatment options. We have explored well-known neural correlates of movement, including event-related desynchronization (ERD), phase synchrony, and a recently-introduced measure of phase dynamics, in participants with CP and healthy control participants. Although present, significantly less ERD and phase locking were found in the group with CP. Additionally, inter-group differences in phase dynamics were also significant. Taken together these findings suggest that users with CP exhibit lower levels of motor cortex activation during motor imagery, as reflected in lower levels of ongoing mu suppression and less functional connectivity. These differences indicate that development of BCIs for individuals with CP may pose additional challenges beyond those faced in providing BCIs to healthy individuals.