926 resultados para Domain representation in OWL
Resumo:
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22α-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.
Resumo:
The world contains boundaries (e.g., continental edge for terrestrial taxa) that impose geometric constraints on the distribution of species ranges. Thus, contrary to traditional thinking, the expected species richness pattern in absence of ecological or physiographical factors is unlikely to be uniform. Species richness has been shown to peak in the middle of a bounded one-dimensional domain, even in the absence of ecological or physiographical factors. Because species ranges are not linear, an extension of the approach to two dimensions is necessary. Here we present a two-dimensional null model accounting for effects of geometric constraints. We use the model to examine the effects of continental edge on the distribution of terrestrial animals in Africa and compare the predictions with the observed pattern of species richness in birds endemic to the continent. Latitudinal, longitudinal, and two-dimensional patterns of species richness are predicted well from the modeled null effects alone. As expected, null effects are of high significance for wide ranging species only. Our results highlight the conceptual significance of an until recently neglected constraint from continental shape alone and support a more cautious analysis of species richness patterns at this scale.
Resumo:
The highest concentrations of prostaglandins in nature are found in the Caribbean gorgonian Plexaura homomalla. Depending on its geographical location, this coral contains prostaglandins with typical mammalian stereochemistry (15S-hydroxy) or the unusual 15R-prostaglandins. Their metabolic origin has remained the subject of mechanistic speculations for three decades. Here, we report the structure of a type of cyclooxygenase (COX) that catalyzes transformation of arachidonic acid into 15R-prostaglandins. Using a homology-based reverse transcriptase–PCR strategy, we cloned a cDNA corresponding to a COX protein from the R variety of P. homomalla. The deduced peptide sequence shows 80% identity with the 15S-specific coral COX from the Arctic soft coral Gersemia fruticosa and ≈50% identity to mammalian COX-1 and COX-2. The predicted tertiary structure shows high homology with mammalian COX isozymes having all of the characteristic structural units and the amino acid residues important in catalysis. Some structural differences are apparent around the peroxidase active site, in the membrane-binding domain, and in the pattern of glycosylation. When expressed in Sf9 cells, the P. homomalla enzyme forms a 15R-prostaglandin endoperoxide together with 11R-hydroxyeicosatetraenoic acid and 15R-hydroxyeicosatetraenoic acid as by-products. The endoperoxide gives rise to 15R-prostaglandins and 12R-hydroxyheptadecatrienoic acid, identified by comparison to authentic standards. Evaluation of the structural differences of this 15R-COX isozyme should provide new insights into the substrate binding and stereospecificity of the dioxygenation reaction of arachidonic acid in the cyclooxygenase active site.
Resumo:
Binding of a hormone agonist to a steroid receptor leads to the dissociation of heat shock proteins, dimerization, specific DNA binding, and target gene activation. Although the progesterone antagonist RU486 can induce most of these events, it fails to activate human progesterone receptor (hPR)-dependent transcription. We have previously demonstrated that a conformational change is a key event leading to receptor activation. The major conformational distinction between hormone- and antihormone-bound receptors occurs within the C-terminal portion of the molecule. Furthermore, hPR mutants lacking the C terminus become transcriptionally active in the presence of RU486. These results suggest that the C terminus contains a repressor domain that inhibits the transcriptional activity of the RU486-bound hPR. In this study, we have defined a 12 amino acid (12AA) region in the C terminus of hPR that is necessary and sufficient for the repressor function when fused to the C-terminal truncated hPR or to the GAL4 DNA-binding domain. Mutations in the 12AA domain (aa 917-928) generate an hPR that is active in the presence of RU486. Furthermore, overexpression of the 12AA peptide activates the RU486-bound wild-type hPR without affecting progesterone-dependent activation. These results suggest that association of the 12AA repressor region with a corepressor might inactivate hPR activity when it is bound to RU486. We propose that binding of a hormone agonist to the receptor changes its conformation in the ligand-binding domain so that association with coactivator is promoted and activation of target gene occurs.
Resumo:
Integrins are major two-way signaling receptors responsible for the attachment of cells to the extracellular matrix and for cell-cell interactions that underlie immune responses, tumor metastasis, and progression of atherosclerosis and thrombosis. We report the structure-function analysis of the cytoplasmic tail of integrin beta 3 (glycoprotein IIla) based on the cellular import of synthetic peptide analogs of this region. Among the four overlapping cell-permeable peptides, only the peptide carrying residues 747-762 of the carboxyl-terminal segment of integrin beta 3 inhibited adhesion of human erythroleukemia (HEL) cells and of human endothelial cells (ECV) 304 to immobilized fibrinogen mediated by integrin beta 3 heterodimers, alpha IIb beta 3, and alpha v beta 3, respectively. Inhibition of adhesion was integrin-specific because the cell-permeable beta 3 peptide (residues 747-762) did not inhibit adhesion of human fibroblasts mediated by integrin beta 1 heterodimers. Conversely, a cell-permeable peptide representing homologous portion of the integrin beta 1 cytoplasmic tail (residues 788-803) inhibited adhesion of human fibroblasts, whereas it was without effect on adhesion of HEL or ECV 304 cells. The cell-permeable integrin beta 3 peptide (residues 747-762) carrying a known loss-of-function mutation (Ser752Pro) responsible for the genetic disorder Glanzmann thrombasthenia Paris I did not inhibit cell adhesion of HEL or ECV 304 cells, whereas the beta 3 peptide carrying a Ser752Ala mutation was inhibitory. Although Ser752 is not essential, Tyr747 and Tyr759 form a functionally active tandem because conservative mutations Tyr747Phe or Tyr759Phe resulted in a nonfunctional cell permeable integrin beta 3 peptide. We propose that the carboxyl-terminal segment of the integrin beta 3 cytoplasmic tail spanning residues 747-762 constitutes a major intracellular cell adhesion regulatory domain (CARD) that modulates the interaction of integrin beta 3-expressing cells with immobilized fibrinogen. Import of cell-permeable peptides carrying this domain results in inhibition "from within" of the adhesive function of these integrins.
Resumo:
Previously, we reported on the discovery and characterization of a mammalian chromatin-associated protein, CHD1 (chromo-ATPase/helicase-DNA-binding domain), with features that led us to suspect that it might have an important role in the modification of chromatin structure. We now report on the characterization of the Drosophila melanogaster CHD1 homologue (dCHD1) and its localization on polytene chromosomes. A set of overlapping cDNAs encodes an 1883-aa open reading frame that is 50% identical and 68% similar to the mouse CHD1 sequence, including conservation of the three signature domains for which the protein was named. When the chromo and ATPase/helicase domain sequences in various CHD1 homologues were compared with the corresponding sequences in other proteins, certain distinctive features of the CHD1 chromo and ATPase/helicase domains were revealed. The dCHD1 gene was mapped to position 23C-24A on chromosome 2L. Western blot analyses with antibodies raised against a dCHD1 fusion protein specifically recognized an approximately 210-kDa protein in nuclear extracts from Drosophila embryos and cultured cells. Most interestingly, these antibodies revealed that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae. These observations strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.
Resumo:
The crystal structure of pyruvate phosphate dikinase, a histidyl multiphosphotransfer enzyme that synthesizes adenosine triphosphate, reveals a three-domain molecule in which the phosphohistidine domain is flanked by the nucleotide and the phosphoenolpyruvate/pyruvate domains, with the two substrate binding sites approximately 45 angstroms apart. The modes of substrate binding have been deduced by analogy to D-Ala-D-Ala ligase and to pyruvate kinase. Coupling between the two remote active sites is facilitated by two conformational states of the phosphohistidine domain. While the crystal structure represents the state of interaction with the nucleotide, the second state is achieved by swiveling around two flexible peptide linkers. This dramatic conformational transition brings the phosphocarrier residue in close proximity to phosphoenolpyruvate/pyruvate. The swiveling-domain paradigm provides an effective mechanism for communication in complex multidomain/multiactive site proteins.
Resumo:
A tetramer of the Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Juxtaposition of the recombination sites is accomplished by the assembly of a stable synaptic complex of MuA protein and Mu DNA. This initial critical step is facilitated by the transient binding of the N-terminal domain of MuA to an enhancer DNA element within the Mu genome (called the internal activation sequence, IAS). Recently we solved the three-dimensional solution structure of the enhancer-binding domain of Mu phage transposase (residues 1-76, MuA76) and proposed a model for its interaction with the IAS element. Site-directed mutagenesis coupled with an in vitro transposition assay has been used to assess the validity of the model. We have identified five residues on the surface of MuA that are crucial for stable synaptic complex formation but dispensable for subsequent events in transposition. These mutations are located in the loop (wing) structure and recognition helix of the MuA76 domain of the transposase and do not seriously perturb the structure of the domain. Furthermore, in order to understand the dynamic behavior of the MuA76 domain prior to stable synaptic complex formation, we have measured heteronuclear 15N relaxation rates for the unbound MuA76 domain. In the DNA free state the backbone atoms of the helix-turn-helix motif are generally immobilized whereas the residues in the wing are highly flexible on the pico- to nanosecond time scale. Together these studies define the surface of MuA required for enhancement of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recognition may become structurally ordered only upon DNA binding.
Resumo:
The ALLI gene, located at chromosome band 11q23, is involved in acute leukemia through a series of chromosome translocations and fusion to a variety of genes, most frequently to A4 and AF9. The fused genes encode chimeric proteins proteins. Because the Drosophila homologue of ALL1, trithorax, is a positive regulator of homeotic genes and acts at the level of transcription, it is conceivable that alterations in ALL1 transcriptional activity may underlie its action in malignant transformation. To begin studying this, we examined the All1, AF4, AF9, and AF17 proteins for the presence of potential transcriptional regulatory domains. This was done by fusing regions of the proteins to the yeast GAL4 DNA binding domain and assaying their effect on transcription of a reporter gene. A domain of 55 residues positioned at amino acids 2829-2883 of ALL1 was identified as a very strong activator. Further analysis of this domain by in vitro mutagenesis pointed to a core of hydrophobic and acidic residues as critical for the activity. An ALL1 domain that repressed transcription of the reporter gene coincided with the sequence homologous to a segment of DNA methyltransferase. An AF4 polypeptide containing residues 480-560 showed strong activation potential. The C-terminal segment of AF9 spanning amino acids 478-568 transactivated transcription of the reporter gene in HeLa but not in NIH 3T3 cells. These results suggest that ALL1, AF4, and probably AF9 interact with the transcriptional machinery of the cell.
Resumo:
Domain III of Pseudomonas aeruginosa exotoxin A catalyses the transfer of ADP-ribose from NAD to a modified histidine residue of elongation factor 2 in eukaryotic cells, thus inactivating elongation factor 2. This domain III is inactive in the intact toxin but is active in the isolated form. We report here the 2.5-A crystal structure of this isolated domain crystallized in the presence of NAD and compare it with the corresponding structure in the intact Pseudomonas aeruginosa exotoxin A. We observe a significant conformational difference in the active site region from Arg-458 to Asp-463. Contacts with part of domain II in the intact toxin prevent the adoption of the isolated domain conformation and provide a structural explanation for the observed inactivity. Additional electron density in the active site region corresponds to separate AMP and nicotinamide and indicates that the NAD has been hydrolyzed. The structure has been compared with the catalytic domain of the diphtheria toxin, which was crystallized with ApUp.
Resumo:
The aim of this research is to characterize the coordination of the processes of approximation related to the understanding of the limit of a function. We analyze the answers of 64 post-secondary school students to 7 problems considering the dynamic and metric conception of limit of a function. Results indicate that the metric understanding of the limit in terms of inequality supports that the student is capable of coordinating the approximations in the domain and in the range when lateral approximations coincide. However, the student is not capable of this coordination when lateral approximations do not coincide. This indicates that the metric understanding of the limit begins with the previous construction of the dynamic conception in case of coincidence of the lateral approximations in the range.
Resumo:
Esta investigación estudia las diferentes estructuras subyacentes en el esquema de límite de una función observadas en 23 estudiantes de Bachillerato situados en el nivel Trans del desarrollo del esquema de límite de una función. El esquema de límite de una función se caracterizó en términos de la habilidad que los estudiantes manifestaron en la construcción de la concepción dinámica del límite mediante la coordinación de los procesos de aproximación en el dominio y en el rango, diferenciando aquellas en las que las aproximaciones laterales coinciden de las que no coinciden. Nuestros resultados sugieren que los estudiantes construyen diferentes estructuras subyacentes al esquema debido a las relaciones que establecen entre el límite de una función en un punto y su representación gráfica que permiten identificar características del esquema tematizado del límite de una función.
Resumo:
The high rate of amphibian endemism and the severe habitat modification in the Caribbean islands make them an ideal place to test if the current protected areas network might protect this group. In this study, we model distribution and map species richness of the 40 amphibian species from eastern Cuba with the objectives of identify hotspots, detect gaps in species representation in protected areas, and select additional areas to fill these gaps. We used two modeling methods, Maxent and Habitat Suitability Models, to reach a consensus distribution map for each species, then calculate species richness by combining specific models and finally performed gap analyses for species and hotspots. Our results showed that the models were robust enough to predict species distributions and that most of the amphibian hotspots were represented in reserves, but 50 percent of the species were incompletely covered and Eleutherodactylus rivularis was totally uncovered by the protected areas. We identified 1441 additional km2 (9.9% of the study area) that could be added to the current protected areas, allowing the representation of every species and all hotspots. Our results are relevant for the conservation planning in other Caribbean islands, since studies like this could contribute to fill the gaps in the existing protected areas and to design a future network. Both cases would benefit from modeling amphibian species distribution using available data, even if they are incomplete, rather than relying only in the protection of known or suspected hotspots.
Resumo:
Gender balance has been a particularly salient issue in the recent process of formulating the list of designated commissioners. Jean-Claude Juncker’s success, as President-elect of the European Commission, in securing the designation of nine women as commissioners should be seen in perspective. Female representation in top EU positions remains low. This paper analyses the EP committees, finding a clear divergence in legislative influence between committees chaired by men and women. Although female political representation has been increasing, this is happening at a very slow pace and the most influential leadership roles in the EP remain dominated by men. This raises questions of the possible need to resort to stronger measures to improve female representation in the EU institutions.
Resumo:
This CEPS Special Report analyses the composition of the 20 committees in the new European Parliament and how representative they are of the 28 member states, identifying which policy areas or committees are of particular interest to MEPs from certain countries. It also examines the allocation of committee chairs and party coordinator positions to assess whether the country of origin matters and if so, why. The study reveals that in general the countries’ share of representatives in the committees is very similar in most of the cases to their representation in Parliament. Still, some policy areas have a special relevance for some countries and attract their MEPs in larger numbers. Due to the procedure used in the allocation of the committee chairs, which favours the largest political groups and the largest national parties within them, MEPs from larger member states tend to hold most of these coveted positions. The internal process followed by the political groups in appointing their coordinators in the respective committees is predisposed towards MEPs with seniority, experience and good connections. All in all, the strategic relevance that national parties attach to these positions makes a difference.