895 resultados para Distribution power systems restoration
Resumo:
At the time of restoration transmission line switching is one of the major causes, which creates transient overvoltages. Though detailed Electro Magnetic Transient studies are carried out extensively for the planning and design of transmission systems, such studies are not common in a day-today operation of power systems. However it is important for the operator to ensure during restoration of supply that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents a support vector machine approach to classify the various cases of line energization in the category of safe or unsafe based upon the peak value of overvoltage at the receiving end of line. Operator can define the threshold value of voltage to assign the data pattern in either of the class. For illustration of proposed approach the power system used for switching transient peak overvoltages tests is a 400 kV equivalent system of an Indian southern gri
Resumo:
The voltage stability control problem has become an important concern for utilities transmitting power over long distances. This paper presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage stability of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed fuzzy logic control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and some IEEE standard test systems. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a 24 - node equivalent EHV system of part of Indian southern grid and IEEE New England 39-bus system are presented for illustration purposes. The proposed Fuzzy-Expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups.
Resumo:
Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
This paper is concerned with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator.
Resumo:
Torsional interactions can occur due to the speed input Power System Stabilizer (PSS) that are primarily used to damp low frequency oscillations. The solution to this problem can be either in the form of providing a torsional filter or developing an alternate signal for the PSS. This paper deals with the formulation of a linearized state space model of the system and study of the interactions using eigenvalue analysis. The effects of the parameters of PSS and control signals on the damping of torsional modes are investigated.
Resumo:
Direct stability analysis ofAC/DC power systems using a structure-preserving energy function (SPEF) is proposed in this paper. The system model considered retains the load buses thereby enabling the representation of nonlinear voltage dependent loads. TheHVDC system is represented with the same degree of detail as is normally done in transient stability simulation. The converter controllers can be represented by simplified or detailed models. Two or multi-terminalDC systems can be considered. The stability analysis is illustrated with a 3-machine system example and encouraging results have been obtained.
Resumo:
High power converters are used in variable speed induction motor drive applications. Riding through a short term power supply glitch is becoming an important requirement in these power converters. The power converter uses a large number of control circuit boards for its operation. The control power supply need to ensure that any glitch in the grid side does not affect any of these control circuit boards. A power supply failure of these control cards results in shut down of the entire system. The paper discusses the ride through system developed to overcome voltage sags and short duration outages at the power supply terminals of the control cards in these converters. A 240VA non-isolated, bi-directional buck-boost converter has been designed to be used along with a stack of ultracapacitors to achieve the same. A micro-controller based digital control platform made use of to achieve the control objective. The design of the ultracapacitor stack and the bidirectional converter is described the performance of the experimental set-up is evaluated.
Resumo:
This paper presents a new approach to the power flow analysis in steady state for multiterminal DC-AC systems. A flexible and practical choice of per unit system is used to formulate the DC network and converter equations. A converter is represented by Norton's equivalent of a current source in parallel with the commutation resistance. Unlike in previous literature, the DC network equations are used to derive the controller equations for the DC system using a subset of specifications. The specifications considered are current or power at all terminals except the slack terminal where the DC voltage is specified. The control equations are solved by Newton's method, using the current injections at the converter terminals as state variables. Further, a systematic approach to the handling of constraints is proposed by identifying the priorities in rescheduling of the specified variables. The methodology is illustrated by example of a 5 terminal DC system.
Resumo:
Pulse Forming Line (PFL) based high voltage pulsed power systems are well suited for low impedance High Power Microwave (HPM) sources such as a virtual cathode oscillator (VIRCATOR) operating in nanosecond regimes. The system under development consists of a primary voltage source that charges the capacitor bank of a Marx pulser over a long time duration. The Marx pulser output is then conditioned by a PFL to match the requirement of the HPM diode load. This article describes the design and construction of an oil insulated pulse forming line for a REB (Relativistic Electron Beam) diode used in a VIRCATOR for the generation of high power microwaves. Design of a 250 kV/10 kA/60 ns PFL, including the PSPICE simulation for various load conditions are described.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.