973 resultados para Different frequency
Resumo:
Approximately 25% of acute myeloid leukemias (AMLs) carry internal tandem duplications (ITD) of various lengths within the gene encoding the FMS-like tyrosine kinase receptor 3 (FLT3). Although varying duplication sites exist, most of these length mutations affect the protein´s juxtamembrane domain. FLT3-ITDs support leukemic transformation by constitutive phosphorylation resulting in uncontrolled activation, and their presence is associated with worse prognosis. As known form previous work, they represent leukemia- and patient-specific neoantigens that can be recognized by autologous AML-reactive CD8+ T cells (Graf et al., 2007; Graf et al., unpublished). Herein, in patient FL, diagnosed with FLT3-ITD+ AML and in first complete remission after induction chemotherapy, T cells against her leukemia´s individual FLT3-ITD were detected at a frequency up to 1.7x10-3 among peripheral blood CD8+ T lymphocytes. This rather high frequency suggested, that FLT3-ITD-reactive T cells had been expanded in vivo due to the induction of an anti-leukemia response.rnrnCell material from AML patients is limited, and the patients´ anti-leukemia T-cell repertoire might be skewed, e.g. due to complex previous leukemia-host interactions and chemotherapy. Therefore, allogeneic sources, i.e. buffy coats (BCs) from health donors and umbilical cord blood (UCB) donations, were exploited for the presence and the expansion of FLT3-ITD-reactive T-cell populations. BC- and UCB-derived CD8+ T cells, were distributed at 105 cells per well on microtiter plates and, were stimulated with antigen-presenting cells (APCs) transfected with in vitro-transcribed mRNA (IVT-mRNA) encoding selected FTL3-ITDs. APCs were autologous CD8- blood mononuclear cells, monocytes or FastDCs.rnrnBuffy coat lymphocytes from 19 healthy individuals were analyzed for CD8+ T-cell reactivity against three immunogenic FLT3-ITDs previously identified in patients VE, IN and QQ and designated as VE_, IN_ and QQ_FLT3-ITD, respectively. These healthy donors carried at least one of the HLA I alleles known to present an ITD-derived peptide from one of these FLT3-ITDs. Reactivities against single ITDs were observed in 8/19 donors. In 4 donors the frequencies of ITD-reactive T cells were determined and were estimated to be in the range of 1.25x10-6 to 2.83x10-7 CD8+ T cells. These frequencies were 1,000- to 10,000-fold lower than the frequency of autologous FLT3-ITD-reactive T cells observed in patient FL. Restricting HLA I molecules were identified in two donors. In one of them, the recognition of VE_FLT3-ITD was found to be restricted by HLA-C*07:02, which is different from the HLA allele restricting the anti-ITD T cells of patient VE. In another donor, the recognition of IN_FLT3-ITD was restricted by HLA-B*35:01, which also had been observed in patient IN (Graf et al., unpublished). By gradual 3´-fragmentation of the IN_FLT3-ITD cDNA, the 10-mer peptide CPSDNEYFYV was identified as the target of allogeneic T cells against IN_FLT3-ITD. rnLymphocytes in umbilical cord blood predominantly exhibit a naïve phenotype. Seven UCB donations were analyzed for T-cell responses against the FLT3-ITDs of patients VE, IN, QQ, JC and FL irrespective of their HLA phenotype. ITD-reactive responses against all stimulatory FLT3-ITDs were observed in 5/7 UCB donations. The frequencies of T cells against single FLT3-ITDs in CD8+ lymphocytes were estimated to be in the range of 1.8x10-5 to 3.6x10-6, which is nearly 15-fold higher than the frequencies observed in BCs. Restricting HLA I molecules were identified in 4 of these 5 positive UCB donations. They were mostly different from those observed in the respective patients. But in one UCB donation T cells against the JC_FLT3-ITD had exactly the same peptide specificity and HLA restriction as seen before in patient JC (Graf et al., 2007). Analyses of UCB responder lymphocytes led to the identification of the 10-mer peptide YESDNEYFYV, encoded by FL_FLT3-ITD, that was recognized in association with the frequent allele HLA-A*02:01. This peptide was able to stimulate and enrich ITD-reactive T cells from UCB lymphocytes in vitro. Peptide responders not only recognized the peptide, but also COS-7 cells co-transfected with FL_FLT3-ITD and HLA-A*02:01.rnrnIn conclusion, T cells against AML- and individual-specific FLT3-ITDs were successfully generated not only from patient-derived blood, but also from allogeneic sources. Thereby, ITD-reactive T cells were detected more readily and at higher frequencies in umbilical cord blood than in buffy coat lymphocytes. It occurred that peptide specificity and HLA restriction of allogeneic, ITD-reactive T cells were identical to autologous patient-derived T cells. As shown herein, allogeneic, FLT3-ITD-reactive T cells can be used for the identification of FLT3-ITD-encoded peptides, e.g. for future therapeutic vaccination studies. In addition, these T cells or their receptors can be applied to adoptive transfer.
Resumo:
Subthreshold resonance is a characteristic membrane property of different neuronal classes, is critically involved in the generation of network oscillations, and tunes the integration of synaptic inputs to particular frequency ranges. In order to investigate whether resonance properties of distinct neuronal populations in the immature neocortex contribute to these network oscillations, I performed whole-cell patch-clamp recordings from visually identified neurons in tangential and coronal neocortical slices from postnatal day (P) P0-P7 C57Bl/6 and P6-P13 GAD67-GFP knock-in mice. Subthreshold resonance was analyzed by sinusoidal current injection of varying frequency. All Cajal-Retzius cells showed subthreshold resonance with an average frequency of 2.6 ± 0.1 Hz (n=60), which was massively reduced by ZD7288, a blocker of hyperpolarization-activated cation currents. About 65.6% (n=61) of the supragranular pyramidal neurons showed subthreshold resonance with an average frequency of 1.4 ± 0.1 Hz (n=40). Application of 1 mM Ni2+ suppressed subthreshold resonance, suggesting that low-threshold Ca2+ currents contribute to resonance in these neurons. About 63.6% (n=77) of the layer V pyramidal neurons showed subthreshold resonance with an average frequency of 1.4 ± 0.2 Hz (n=49), which was abolished by ZD7288. Only 44.1% (n=59) of the subplate neurons showed subthreshold resonance with an average frequency of 1.3 ± 0.2 Hz (n=26) and a small resonance strength. Finally, 50% of the investigated GABAergic interneurons showed subthreshold resonance with an average frequency of 2.0 ± 0.2 Hz (n=42). Membrane hyperpolarization to –86 mV attenuated the frequency and strength of subthreshold resonance. Subthreshold resonance was virtually abolished in the presence of 1 mM Ni2+, suggesting that t-type Ca2+ currents are critically involved in the generation of resonance, while ZD7288 had no effect. Application of 0.4 µM TTX suppressed subthreshold resonance at depolarized, but not hyperpolarized membrane potential, suggesting that persistent Na+ current contribute to the amplification of membrane resonance. rnIn summary, these results demonstrate that all investigated neuronal subpopulations reveal resonance behavior, with either hyperpolarization-activated cation or low-threshold Ca2+ currents contributing to the subthreshold resonance. GABAergic interneurons also express subthreshold resonance at low frequencies, with t-type Ca2+ and persistent Na+ currents underlying the generation of membrane resonance. The membrane resonance of immature neurons may contribute to the generation of slow oscillatory activity pattern in the immature neocortex and enhance the temporal precision of synaptic integration in developing cortical neurons.rn
Resumo:
OBJECTIVE: To determine the formation and dissolution of calcium fluoride on the enamel surface after application of two fluoride gel-saliva mixtures. METHOD AND MATERIALS: From each of 80 bovine incisors, two enamel specimens were prepared and subjected to two different treatment procedures. In group 1, 80 specimens were treated with a mixture of an amine fluoride gel (1.25% F-; pH 5.2; 5 minutes) and human saliva. In group 2, 80 enamel blocks were subjected to a mixture of sodium fluoride gel (1.25% F; pH 5.5; 5 minutes) and human saliva. Subsequent to fluoride treatment, 40 specimens from each group were stored in human saliva and sterile water, respectively. Ten specimens were removed after each of 1 hour, 24 hours, 2 days, and 5 days and analyzed according to potassium hydroxide-soluble fluoride. RESULTS: Application of amine fluoride gel resulted in a higher amount of potassium hydroxide-soluble fluoride than did sodium fluoride gel 1 hour after application. Saliva exerted an inhibitory effect according to the dissolution rate of calcium fluoride. However, after 5 days, more than 90% of the precipitated calcium fluoride was dissolved in the amine fluoride group, and almost all potassium hydroxide-soluble fluoride was lost in the sodium fluoride group. Calcium fluoride apparently dissolves rapidly, even at almost neutral pH. CONCLUSION: Considering the limitations of an in vitro study, it is concluded that highly concentrated fluoride gels should be applied at an adequate frequency to reestablish a calcium fluoride-like layer.
Resumo:
Thrombotic thrombocytopenic purpura (TTP) and hemolytic-uremic syndrome (HUS) represent multiple disorders with diverse etiologies. We compared the gender and race of 335 patients enrolled in the Oklahoma TTP-HUS Registry across 21 years for their first episode of TTP or HUS to appropriate control groups. The relative frequency of women and white race among patients with TTP-HUS-associated with a bloody diarrhea prodrome and the relative frequency of women with quinine-associated TTP-HUS were significantly greater than their control populations. The relative frequency of women and black race among patients with idiopathic TTP and TTP-associated with severe ADAMTS13 deficiency was significantly greater than their control populations. The relative frequency of black race among patients who had systemic lupus erythematosus (SLE) preceding TTP was significantly greater than among a population of patients with SLE, and the relative frequency of black race among patients with other autoimmune disorders preceding TTP was significantly greater than their control population. No significant gender or race disparities were present among patients with hematopoietic stem cell transplantation-associated thrombotic microangiopathy, TTP associated with pregnancy, or TTP associated with drugs other than quinine. The validity of these observations is supported by the enrollment of all consecutive patients across 21 years from a defined geographic region, without selection or referral bias. These observations of different gender and race disparities among the TTP-HUS syndromes suggest the presence of different risk factors and may serve as starting points for novel investigations of pathogenesis.
Resumo:
Objective: To compare the soft and hard tissue healing and remodeling around tissue-level implants with different neck configurations after at least 1 year of functional loading. Material and methods: Eighteen patients with multiple missing teeth in the posterior area received two implants inserted in the same sextant. One test (T) implant with a 1.8 mm turned neck and one control (C) implant with a 2.8 mm turned neck were randomly assigned. All implants were placed transmucosally to the same sink depth of approximately 1.8 mm. Peri-apical radiographs were obtained using the paralleling technique and digitized. Two investigators blinded to the implant type-evaluated soft and hard tissue conditions at baseline, 6 months and 1 year after loading. Results: The mean crestal bone levels and soft tissue parameters were not significantly different between T and C implants at all time points. However, T implants displayed significantly less crestal bone loss than C implants after 1 year. Moreover, a frequency analysis revealed a higher percentage (50%) of T implants with crestal bone levels 1–2 mm below the implant shoulder compared with C implants (5.6%) 1 year after loading. Conclusion: Implants with a reduced height turned neck of 1.8 mm may, indeed, lower the crestal bone resorption and hence, may maintain higher crestal bone levels than do implants with a 2.8 mm turned neck, when sunk to the same depth. Moreover, several factors other than the vertical positioning of the moderately rough SLA surface may influence crestal bone levels after 1 year of function.
Resumo:
Introduction: As a previous study revealed, arts speech therapy (AST) affects cardiorespiratory interaction [1]. The aim of the present study was to investigate whether AST also has effects on brain oxygenation and hemodynamics measured non-invasively using near-infrared spectroscopy (NIRS). Material and methods: NIRS measurements were performed on 17 subjects (8 men and 9 women, mean age: 35.6 ± 12.7 y) during AST. Each measurement lasted 35 min, comprising 8 min pre-baseline, 10 min recitation and 20 min post-baseline. For each subject, measurements were performed for three different AST recitation tasks (recitation of alliterative, hexameter and prose verse). Relative concentration changes of oxyhemoglobin (Δ[O2Hb]) and deoxyhemoglobin (Δ[HHb]) as well as the tissue oxygenation index (TOI) were measured using a Hamamatsu NIRO300 NIRS device and a sensor placed on the subjects forehead. Movement artifacts were removed using a novel method [2]. Statistical analysis (Wilcoxon test) was applied to the data to investigate (i) if the recitation causes changes in the median values and/or in the Mayer wave power spectral density (MW-PSD, range: 0.07–0.13 Hz) of Δ[O2Hb], Δ[HHb] or TOI, and (ii) if these changes vary between the 3 recitation forms. Results: For all three recitation styles a significant (p < 0.05) decrease in Δ[O2Hb] and TOI was found, indicating a decrease in blood flow. These decreases did not vary significantly between the three styles. MW-PSD increased significantly for Δ[O2Hb] when reciting the hexameter and prose verse, and for Δ[HHb] and TOI when reciting alliterations and hexameter, representing an increase in Mayer waves. The MW-PSD increase for Δ[O2Hb] was significantly larger for the hexameter verse compared to alliterative and prose verse Conclusion: The study showed that AST affects brain hemodynamics (oxygenation, blood flow and Mayer waves). Recitation caused a significant decrease in cerebral blood flow for all recitation styles as well as an increase in Mayer waves, particularly for the hexameter, which may indicate a sympathetic activation. References 1. D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, H. Bettermann. Am J Physiol Heart Circ Physiol, 287 (2) (2004), pp. H579–H587 2. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. Physiol Meas, 31 (5) (2010), pp. 649–662
Resumo:
The purpose of this study was to analyse hysteroscopic results in patients with recurrent miscarriages and to compare the frequency of uterine anomalies in women with a history of exactly two and with more than two consecutive miscarriages. A retrospective analysis of 206 patients undergoing hysteroscopy for repeated early pregnancy losses was performed at two university centres. Late miscarriages were excluded, terminations of pregnancy were not counted. Eighty-seven patients had suffered from exactly two early miscarriages and 119 from more than two. Both groups were comparable with respect to age at admission (32.95+/-4.46 versus 34.06+/-5.02 years) and at first miscarriage (30.43+/-4.24 versus 29.08+/-5.38 years). The prevalence of acquired (adhesions, polyps, fibroids) and congenital uterine anomalies (septate or bicornuate uterus, etc.) did not differ significantly (acquired: 28.7 versus 27.7%; congenital: 9.2 versus 16.8%). The rates of uterine anomalies did not differ significantly overall (36.8 versus 42.9%). In conclusion, uterine anomalies are frequently found in patients with two and with more than two early miscarriages. Due to the high rate of anomalies, their risk for adverse pregnancy outcome and a possible therapeutic approach, hysteroscopy might be a diagnostic option even after two early miscarriages.
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
Resumo:
The means through which the nervous system perceives its environment is one of the most fascinating questions in contemporary science. Our endeavors to comprehend the principles of neural science provide an instance of how biological processes may inspire novel methods in mathematical modeling and engineering. The application ofmathematical models towards understanding neural signals and systems represents a vibrant field of research that has spanned over half a century. During this period, multiple approaches to neuronal modeling have been adopted, and each approach is adept at elucidating a specific aspect of nervous system function. Thus while bio-physical models have strived to comprehend the dynamics of actual physical processes occurring within a nerve cell, the phenomenological approach has conceived models that relate the ionic properties of nerve cells to transitions in neural activity. Further-more, the field of neural networks has endeavored to explore how distributed parallel processing systems may become capable of storing memory. Through this project, we strive to explore how some of the insights gained from biophysical neuronal modeling may be incorporated within the field of neural net-works. We specifically study the capabilities of a simple neural model, the Resonate-and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling. While reflecting further biological plausibility, the RAF neuron is also analytically tractable, and thus may be implemented within neural networks. In the following thesis, we provide a brief overview of the different approaches that have been adopted towards comprehending the properties of nerve cells, along with the framework under which our specific neuron model relates to the field of neuronal modeling. Subsequently, we explore some of the time-dependent neurocomputational capabilities of the RAF neuron, and we utilize the model to classify logic gates, and solve the classic XOR problem. Finally we explore how the resonate-and-fire neuron may be implemented within neural networks, and how such a network could be adapted through the temporal backpropagation algorithm.
Resumo:
Seventy male lambs over 10 weeks of age were castrated using Burdizzo, rubber rings, or surgery to assess the acute and long-term effects of castration. All castrations were performed under local anaesthesia. The surgically castrated lambs were additionally sedated with xylazine and the sedation reversed with tolazoline. The frequency of abnormal postures and immediate behavioural responses indicated that surgically castrated lambs were most distressed; the lambs castrated using Burdizzo and rubber rings were not dissimilar to those of the control group. Between 1.5 and 9h after castration, signs of pain and distress were at a lower level in lambs anaesthetised with bupivacaine compared with those treated with lidocaine. Due to the markedly faster wound healing, Burdizzo castration seemed to be preferable (fewer signs of long-term pain) when compared to the rubber ring technique. It was concluded that local anaesthesia with bupivacaine, followed by the Burdizzo method is the preferable technique for the castration of lambs older than 10 weeks of age.
Resumo:
We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.
Resumo:
BACKGROUND: Hypnotic depth but not haemodynamic responsiveness is measured with EEG-based monitors. In this study we compared heart rate variability (HRV) in unstimulated patients and stimulation-induced HRV at different levels of anaesthesia. METHODS: A total of 95 ASA I or II patients were randomly assigned to five groups (Group 1: BIS 45(5), remifentanil 1 ng ml(-1); Group 2: BIS 45(5), remifentanil 2 ng ml(-1); Group 3: BIS 45(5), remifentanil 4 ng ml(-1); Group 4: BIS 30(5), remifentanil 2 ng ml(-1); Group 5: BIS 60(5), remifentanil 2 ng ml(-1)). A time- and frequency-domain analysis of the RR interval (RRI) from the electrocardiogram was performed. HRV before induction, before and after a 5 s tetanic stimulus of the ulnar nerve, and before and after tracheal intubation was compared between groups, between stimuli, and between responders to intubation [systolic arterial pressure (SAP) increase >20 mm Hg, a maximal heart rate (HR) after intubation >90 min(-1) or both] and non-responders (anova). RESULTS: Induction of anaesthesia significantly lowered HR and HRV. Mean RRI before stimulation was higher in G3 than in G1, G2, and G4 (P < 0.001), whereas the other HRV parameters were similar. Intubation induced a greater HRV response than tetanic stimulation. The mean RRI after intubation was lower in G3 compared with the other groups and the sd of the RRI after tetanic stimulation was lower in G3 compared with G5. Otherwise, unstimulated HRV and stimulation-induced HRV were similar in responders and non-responders. CONCLUSION: HRV parameters discriminate between awake and general anaesthesia, are different after tracheal intubation and a 5 s ulnar nerve stimulation, but do not discriminate between different levels of haemodynamic responsiveness during surgical anaesthesia.
Resumo:
OBJECTIVE: Resonance frequency analysis (RFA) is a method of measuring implant stability. However, little is known about RFA of implants with long loading periods. The objective of the present study was to determine standard implant stability quotients (ISQs) for clinical successfully osseointegrated 1-stage implants in the edentulous mandible. MATERIALS AND METHODS: Stability measurements by means of RFA were performed in regularly followed patients who had received 1- stage implants for overdenture support. The time interval between implant placement and measurement ranged from 1 year up to 10 years. The short-term group comprised patients who were followed up to 5 years, while the long-term group included patients with an observation time of > 5 years up to 10 years. For further comparison RFA measurements were performed in a matching group with unloaded implants at the end of the surgical procedure. For statistical analysis various parameters that might influence the ISQs of loaded implants were included, and a mixed-effects model applied (regression analysis, P <.0125). RESULTS: Ninety-four patients were available with a total of 205 loaded implants, and 16 patients with 36 implants immediately after the surgical procedure. The mean ISQ of all measured implants was 64.5 +/- 7.9 (range, 58 to 72). Statistical analysis did not reveal significant differences in the mean ISQ related to the observation time. The parameters with overall statistical significance were the diameter of the implants and changes in the attachment level. In the short-term group, the gender and the clinically measured attachment level had a significant effect. Implant diameter had a significant effect in the long-term group. CONCLUSIONS: A mean ISQ of 64.5 +/- 7.9 was found to be representative for stable asymptomatic interforaminal implants measured by the RFA instrument at any given time point. No significant differences in ISQ values were found between implants with different postsurgical time intervals. Implant diameter appears to influence the ISQ of interforaminal implants.
Resumo:
Power transformers are key components of the power grid and are also one of the most subjected to a variety of power system transients. The failure of a large transformer can cause severe monetary losses to a utility, thus adequate protection schemes are of great importance to avoid transformer damage and maximize the continuity of service. Computer modeling can be used as an efficient tool to improve the reliability of a transformer protective relay application. Unfortunately, transformer models presently available in commercial software lack completeness in the representation of several aspects such as internal winding faults, which is a common cause of transformer failure. It is also important to adequately represent the transformer at frequencies higher than the power frequency for a more accurate simulation of switching transients since these are a well known cause for the unwanted tripping of protective relays. This work develops new capabilities for the Hybrid Transformer Model (XFMR) implemented in ATPDraw to allow the representation of internal winding faults and slow-front transients up to 10 kHz. The new model can be developed using any of two sources of information: 1) test report data and 2) design data. When only test-report data is available, a higher-order leakage inductance matrix is created from standard measurements. If design information is available, a Finite Element Model is created to calculate the leakage parameters for the higher-order model. An analytical model is also implemented as an alternative to FEM modeling. Measurements on 15-kVA 240?/208Y V and 500-kVA 11430Y/235Y V distribution transformers were performed to validate the model. A transformer model that is valid for simulations for frequencies above the power frequency was developed after continuing the division of windings into multiple sections and including a higher-order capacitance matrix. Frequency-scan laboratory measurements were used to benchmark the simulations. Finally, a stability analysis of the higher-order model was made by analyzing the trapezoidal rule for numerical integration as used in ATP. Numerical damping was also added to suppress oscillations locally when discontinuities occurred in the solution. A maximum error magnitude of 7.84% was encountered in the simulated currents for different turn-to-ground and turn-to-turn faults. The FEM approach provided the most accurate means to determine the leakage parameters for the ATP model. The higher-order model was found to reproduce the short-circuit impedance acceptably up to about 10 kHz and the behavior at the first anti-resonant frequency was better matched with the measurements.
Resumo:
The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.