946 resultados para Diesel emissions
Resumo:
In the present work, the spray structure of diesel from a 200-mu m, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean `Diameter (SMD) is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.
Resumo:
Awareness for the need of sustainable and eco-friendly mobility has been increasing and various innovations are taking place in this regard. A study was carried out to assess the feasibility of installing solar photovoltaic (PV) modules atop train coaches. Most long-distance trains having LHB coaches do not have self-generating systems, thus making power cars mandatory to supply the required power for lighting loads. Feasibility of supplementing diesel generator sets with power from solar PV modules installed on coach rooftops has been reported in this communication. Not only is there a conservation of fuel, there is also a significant reduction in CO2 emissions. This work has shown that the area available on coach rooftops is more than sufficient to generate the required power, during sunlight hours, for the electrical loads of a non-A/C coach even during winter. All calculations were done keeping a standard route as the reference. Taking the cost of diesel to be Rs 66/litre, it was estimated that there will be annual savings of Rs 5,900,000 corresponding to 90,800 litres diesel per rake per year by implementing this scheme. The installation cost of solar modules would be recovered within 2-3 years. Implementation of this scheme would also amount to an annual reduction of 239 tonnes of CO2 emissions.
Resumo:
The Bangalore Metropolitan Transport Corporation (BMTC) took an initiative to check the overall benefits of introducing electric buses as a suitable replacement for the diesel buses to tackle the burgeoning pollution in the city of Bengaluru, India. For a trial run of three months, an electric bus was procured from a Chinese company `Build Your Dreams' (BYD). Data were collected by BMTC on the operation and maintenance of the bus. This new initiative, if rightly guided, could have a direct impact on the lives of those in the city. An economic analysis of the running as well as maintenance of the electric buses within the city limits was performed. For comparison, the same analysis was performed for the data from the existing diesel bus operating on the same route. On the basis of the study, it can be concluded that the introduction of electric buses as a means of public transport in the city would be beneficial both economically as well as environmentally. The electric bus also makes much less noise, thereby helping reduce noise pollution and makes less vibration when compared to the diesel bus. This results in a more comfortable journey for the passengers.
Resumo:
This article is the result of experimental studies of the rheologv, viscosities, surface tensions, and atomization of water-methanol and diesel emulsions. The Span 80 and Tween 60 are employed to make three emulsifying agents, Y01, Y02, and Y03, with viscosity of 1.32-1.5 Pa s and HLB values of 5.36, 4.83, and 4.51, respectively. In the water-in-oil emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8-8.0%. The viscosity of the emulsions is 0.003-0.02 Pa s, and the surface tens ion is 0.04-0.1 N/m. The types and concentrations of agents significantly influence the viscosity of the emulsions, and the higher concentration of the aqueous phase (<50%) in creases the viscosities of the emulsions, especially for higher agent concentration. Interfacial membrane and HLB values of the agents can explain all these phenomena. Higher aqueous phase concentration and agent viscosity results in larger Sauter mean diameter.
Resumo:
Consultoria Legislativa - Área XII - Recursos Minerais, Hídricos e Energéticos.
Resumo:
We analyze optimal second-best emission taxes in a durable good industry under imperfect competition. The analysis is performed for three different types of emissions and for situations where the good is rented, sold or simultaneously sold and rented. We show, for durable goods that may cause pollution in a period (or in periods) different from the production period, that the expected overall emission tax and the expected total marginal environmental damage per unit produced in each period are the relevant variables to consider in the analysis of overinternalization and in the comparison of optimal emission taxes for renting, selling and renting-selling firms. Our results allow to extend some previous results in the literature to these durable goods and provide an adequate perspective on some other results (in particular, we point out the limitations of focusing only, for those durable goods, on the level and effects of the optimal emission tax in the production period).