525 resultados para Dexamethasone
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
P-glycoprotein is an adenosine triphosphate (ATP)-driven drug efflux carrier responsible for transport of xenobiotics and multiple classes of drugs, many usually use in veterinary medicine. Encoded by MDR1 gene, also referred to as ABCB1, located on chromosome 14, is expressed in many tissues with secretory or excretory functions, such as liver, kidney and intestine, where it limits drug absorption from the gut and promotes drug excretion into the bile and urine of their substrates. In 2001, a 4 base pair gene deletion mutation in the canine MDR1 gene was identified as MDR1-1▲, ABCB1-1▲, MDR1 MDR1 nt 230 (del4) and associated with an non-functional Pglycoprotein. The clinical correlation is the (hyper) sensitivity of certain dogs breeds, mostly collies, to a few classes of drugs such as anticancer drugs (doxorubicin, vincristine, vinblastine), immunosuppressants (cyclosporine), antiparasitic drugs (ivermectin, moxidectin), steroids hormones (aldosterone, cortisol, dexamethasone), antimicrobial agents (tetracycline, doxycycline, levofloxacin, ketoconazole, itraconazole), analgesics (morphine, methadone), antidiarrheals (loperamide), antiepileptic agents (phenothiazine), cardiac drugs (digoxin, diltiazem, verapamil, talinolol) and others. Dogs with homozygous MDR1 nt 230 (del4) MDR1 mutations (MDR1 - / -) have a higher predisposition to intoxication with substrates of P-gp than heterozygous (MDR1 + / -) and these are more likely than dogs homozygous nonmutant (MDR1 +/ +). After the identification of nt230 (del4) mutation, several molecular techniques have been developed for identification of mutant animals as a diagnostic method. The importance of molecular diagnosis is, after the identification of mutant animals, establish treatment protocols safe, exclude this animals from reproduction (genetic selection program) and investigating the history of adverse drugs reactions... (Complete abstract click electronic access below)
Resumo:
The Hyperadrenocorticism is a disease that occur in dogs between mead to old age, is associated with the higher level of glucocorticoid that result in a corporal reaction. To make a diagnostic of this disease is necessary have a good history and physical examination, the principals complains of the proprietary are polyuria, polydipsia and polyphagia, in some times abdominal enlargement and lethargy. In the physical examination is observed this abdominal enlargement, hepatomegaly, alopecia, in some cases pyoderma and difficult respiratory. From this documents is possible determinate the differential diagnostics and with the tests find the diagnostic of the disease that the animal have. The base methods are hemogram, biochemical, urinalysis, radiographs and ultrasonography it’s possible do tomography and magnetic resonance too. There are confirmation methods too, they are very important, because the others not have documents necessary for the final diagnostic. Those are Urine cortisol to creatinine ratio, dexamethasone suppression test with high dose or low dose and ACTH stimulation test. Despite those tests have high sensibility and specificity, they can result in false positive or false negative, this is one of the causes to do the base methods and together make the veterinary doctor find the solution of the diagnostic and do the adequate treatment
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibroblasts from a patient with GO before (controls) and after treatment with 10 nM and 100 nM dexamethasone (DEX). Orbital fibroblasts showed ERA gene expression. In the cells treated with 10 nM and 100 nM DEX, ERA gene expression was, respectively, 85% higher and 74% lower, than in the control group. We concluded that ERA gene expression is found in the orbital fibroblasts of patient with GO, which may be affected by glucocorticoids in a dose-related manner. Arch Endocrinol Metab. 2015;59(3):273-6
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dexamethasone is a synthetic glucocorticoid widely used to treat allergic and inflammatory processes. This drug is used in three main situations, are used to contain acute or chronic inflammatory processes, or like immunosuppressive drug's. In these cases the patient will receive high doses for a chronic period and, therefore, has a much greater chance of adverse side effects, such as hypertension, diabetes and dyslipidemia. Dexamethasone promotes deleterious effects on the arachidonic acid pathway, when administered in high doses, because it is a potent anti-inflammatory drug. We recently demonstrated that dexamethasone significantly reduces the protein expression of vascular endothelial growth factor (VEGF) in both skeletal muscle and heart, but the mechanisms involved remain unclear. Meanwhile, exercise has been shown to be effective against high blood pressure, diabetes and dyslipidemia, promoting, among other factors, the increase in VEGF and angiogenesis. One possible explanation for these effects would be the creation of new vessels mediated by inflammation, or by the stimulation of the formation of products of the metabolism of arachidonic acid (AA), such as prostaglandin E2 (PGE2) and VEGF, by increasing the stimulation of the enzymes cyclooxygenase 1 and 2 (COX-1 and COX-2). Little is known about the preventive effects of training on the action of dexamethasone in the arachidonic acid pathway. Therefore, the aim of this study was to determine whether aerobic exercise training, performed before and concomitant treatment with dexamethasone, was able to prevent the effects of the dexamethasone in the protein expression of COX-2 and VEGF. For this, we used young Wistar rats (n = 40) which were randomly divided into 4 groups: sedentary control (SC), sedentary and treated with dexamethasone (SD), trained control (TC) and trained and treated with dexamethasone (TD). These rats performed aerobic exercise training, 60% of maximum capacity, 5
Resumo:
Dexamethasone (DEXA) is a synthetic glucocorticoid widely used in the handling of several drugs, for its proven benefits in fighting inflammation and allergies. Despite their benefits, their chronic use leads to several side effects that include changes in the body in the metabolism of carbohydrates, lipids and proteins. Moreover, being an anti-inflammatory, acts on the arachidonic acid pathway, reducing the expression of the enzyme cyclooxygenase (COX-2) and growth factor derived from the endothelium of blood vessels (VEGF) in various tissues. However, its effects on the myocardium are still uncertain. The physical training (PT), in turn, promotes effects contrary to those caused by chronic use of DEXA, however, little is known about the preventive effects of TF in the side effects of Dexa in the myocardium. Therefore, the aim of this study was to determine if the TF has the ability to prevent and/or mitigate the effects of Dexa in protein expression of COX-2 and VEGF in the myocardium. Forty animals were divided into 4 groups: sedentary control (SC), sedentary treated with Dexa (SD), trained control (TC) and Trained treated with Dexa (TD) and submitted to a protocol of physical training on the treadmill for 70 days (1 h/day-5 days per week, 60% of physical capacity) or kept sedentary. Over the past 10 days, rats were treated with Dexa (Decadron, 0.5 mg/kg per day, ip) or saline. During training the animals were weighed weekly and during treatment daily. At the end of treatment was made to measure fasting glucose levels of animals. The rats were killed with excess anesthesia and cardiac muscle was removed, weighed, homogenized, centrifuged and stored at -20° C for analysis of protein expression of VEGF and COX-2 by Western blotting technique. Treatment with dexamethasone caused a weight loss of 18% in sedentary animals and 13% in trained as well as elevated levels of fasting glucose in sedentary (88%). The TF was unable to mitigate the loss in...
Resumo:
Muscle atrophy is always associated with Dexamethasone (Dexa) treatment, however the mechanisms are not completely understood. This study investigated the effects of Dexa on myostatin and p70S6K protein expression and if previous exercise training (T) can attenuate these effects. Eighty rats were distributed into 4 groups: sedentary control (SC), sedentary treated with Dexa (SD; 0,5 mg/kg per day, i.p., 10 days), trained control (TC) and trained treated with Dexa (TD) and underwent a training period where they were either submitted to a running protocol (60% of physical capacity, 5 days/week for 8 weeks) or kept sedentary. After T period, animals underwent Dexa treatment concomitant with training. Western Blot was performed to identify myostatin and p70S6k protein expression in the tibialis anterior (TA) and soleus (SOL) muscle. Ten days of Dexa treatment increased fasting glucose (SD=+62%), however previous T attenuated this increase (TD=+20%, p<0.05). Dexa determined significant decrease in body weight in TD (-22%) and SD (-25%), followed by TA weight reduction in SD (-23%) and TD (-20%). Previous training could not avoid these decreases. Myostatin protein expression was not altered by dexa treatment or training in TA muscle but in SOL muscle it was significantly modified after T, regardless of treatment (TC=+%23 and TD=+25) compared with their respective controls. The protein p70S6K was not modified neither by dexa nor training in any of the analyzed muscle or condition. The results of this study allowed us to conclude that previous training attenuates the hyperglycemia induced by Dexa, however it did not prevent the body or muscle weight reductions. Even in the presence of muscle atrophy, the expression of myostatin and p70S6K do not justify the mechanisms of muscle loss induced by Dexa, which suggests that other catabolic or anabolic proteins could be involved in the process of muscle atrophy after 10 days of treatment with Dexa
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)