901 resultados para Degree of freedom
Resumo:
Mathematical models of the knee joint are important tools which have both theoretical and practical applications. They are used by researchers to fully understand the stabilizing role of the components of the joint, by engineers as an aid for prosthetic design, by surgeons during the planning of an operation or during the operation itself, and by orthopedists for diagnosis and rehabilitation purposes. The principal aims of knee models are to reproduce the restraining function of each structure of the joint and to replicate the relative motion of the bones which constitute the joint itself. It is clear that the first point is functional to the second one. However, the standard procedures for the dynamic modelling of the knee tend to be more focused on the second aspect: the motion of the joint is correctly replicated, but the stabilizing role of the articular components is somehow lost. A first contribution of this dissertation is the definition of a novel approach — called sequential approach — for the dynamic modelling of the knee. The procedure makes it possible to develop more and more sophisticated models of the joint by a succession of steps, starting from a first simple model of its passive motion. The fundamental characteristic of the proposed procedure is that the results obtained at each step do not worsen those already obtained at previous steps, thus preserving the restraining function of the knee structures. The models which stem from the first two steps of the sequential approach are then presented. The result of the first step is a model of the passive motion of the knee, comprehensive of the patello-femoral joint. Kinematical and anatomical considerations lead to define a one degree of freedom rigid link mechanism, whose members represent determinate components of the joint. The result of the second step is a stiffness model of the knee. This model is obtained from the first one, by following the rules of the proposed procedure. Both models have been identified from experimental data by means of an optimization procedure. The simulated motions of the models then have been compared to the experimental ones. Both models accurately reproduce the motion of the joint under the corresponding loading conditions. Moreover, the sequential approach makes sure the results obtained at the first step are not worsened at the second step: the stiffness model can also reproduce the passive motion of the knee with the same accuracy than the previous simpler model. The procedure proved to be successful and thus promising for the definition of more complex models which could also involve the effect of muscular forces.
Resumo:
The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1
Resumo:
The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.
Resumo:
Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.
Resumo:
In der vorgelegten Doktorarbeit werden Experimente vorgestellt, die an einem einzelnen Proton in einer Penningfalle durchgeführt worden sind. Die Eigenbewegung eines isoliert gespeicherten, freien Protons konnte elektronisch durch Kopplung an einen Resonanzschwingkreis nachgewiesen werden. Dies stellt eine nicht-destruktive Messung dar, d. h. das Teilchen geht während der Messung nicht verloren. Die freie Zyklotronfrequenz, die aus den drei gemessenen Eigenfrequenzen hervorgeht, ist eine von zwei zur Bestimmung des magnetischen Moments notwendigen Frequenzen. So wird im Gegensatz zu den existierenden Arbeiten eine direkte Bestimmung des g-Faktors ermöglicht. Planung, Entwicklung und Inbetriebnahme des experimentellen Aufbaus wurden im Rahmen dieser Arbeit durchgeführt, womit eine Messgenauigkeit von 10-7 erreicht wurde. Die dabei zu bewältigenden technischen Herausforderungen zur Bestimmung der zweiten Frequenz (der Larmorfrequenz) ergeben sich aus der Kleinheit des magnetischen Moments. Bei dem für diese Messung benötigten Spinzustand des Teilchens handelt es sich um einen internen Freiheitsgrad, der nur über eine Kopplung des magnetischen Moments an die Eigenbewegung bestimmt werden kann. Eine neuartige, hybride Penningfalle wird in dieser Arbeit vorgestellt, die als Quantensprung-Spektrometer die Spininformation auf die Eigenbewegung abbildet. Damit liegt der aus der magnetischen Kopplung resultierende Frequenzunterschied in den beiden Spinzuständen erstmalig in einem elektronisch detektierbaren Bereich.
Resumo:
Im Mittelpunkt der Studie "The Sound of Democracy - the Sound of Freedom". Jazzrezeption in Deutschland (1945 - 1963) steht ein Korpus von 16 Oral-History-Interviews mit Zeitzeugen der deutschen Jazzszene. Interviewt wurden Musiker ebenso wie bildende Künstler, Journalisten, Clubbesitzer und Jazzfans, die die Jazzszene in den 1950ern bildeten. Die Interviews werden in einen Kontext zeitgenössischer Quellen gestellt: Zeitschriftenartikel (hauptsächlich aus dem "Jazz Podium" ebenso wie Radiomanuskripte des Bayerischen Rundfunks.rnDie Ausgangsüberlegung ist die Frage, was der Jazz für sein Publikum bedeutete, mit anderen Worten, warum wählte eine studentische, sich selbst als elitär wahrnehmende Schicht aus dem großen Fundus an kulturellen Ausdrucksformen, die nach dem Zweiten Weltkrieg aus den USA nach Deutschland strömten, ausgerechnet den Jazz als persönliche Ausdrucksform? Worin bestand seine symbolische Strahlkraft für diese jungen Menschen?rnIn Zusammenhang mit dieser Frage steht die Überlegung: In welchem Maße wurde Jazz als dezidiert amerikanische Ausdrucksform wahrgenommen und welche Amerikabilder wurden durch den Jazz transportiert? Wurde Jazz bewusst als Werkzeug der Besatzer zur demokratischen Umerziehung des deutschen Volkes eingesetzt und wenn ja, in welcher Form, beziehungsweise in welchem Maß? Wie stark war die Symbolleistung und metaphorische Bedeutung des Jazz für das deutsche Publikum und in welchem Zusammenhang steht die Symbolleistung des Jazz mit der Symbolleistung der USA als Besetzungs- bzw. Befreiungsmacht? rn
Resumo:
Wearable inertial and magnetic measurements units (IMMU) are an important tool for underwater motion analysis because they are swimmer-centric, they require only simple measurement set-up and they provide the performance results very quickly. In order to estimate 3D joint kinematics during motion, protocols were developed to transpose the IMMU orientation estimation to a biomechanical model. The aim of the thesis was to validate a protocol originally propositioned to estimate the joint angles of the upper limbs during one-degree-of-freedom movements in dry settings and herein modified to perform 3D kinematics analysis of shoulders, elbows and wrists during swimming. Eight high-level swimmers were assessed in the laboratory by means of an IMMU while simulating the front crawl and breaststroke movements. A stereo-photogrammetric system (SPS) was used as reference. The joint angles (in degrees) of the shoulders (flexion-extension, abduction-adduction and internal-external rotation), the elbows (flexion-extension and pronation-supination), and the wrists (flexion-extension and radial-ulnar deviation) were estimated with the two systems and compared by means of root mean square errors (RMSE), relative RMSE, Pearson’s product-moment coefficient correlation (R) and coefficient of multiple correlation (CMC). Subsequently, the athletes were assessed during pool swimming trials through the IMMU. Considering both swim styles and all joint degrees of freedom modeled, the comparison between the IMMU and the SPS showed median values of RMSE lower than 8°, representing 10% of overall joint range of motion, high median values of CMC (0.97) and R (0.96). These findings suggest that the protocol accurately estimated the 3D orientation of the shoulders, elbows and wrists joint during swimming with accuracy adequate for the purposes of research. In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU was revealed to be a useful tool for both sport and clinical contexts.
Resumo:
PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene's test, one and three-way ANOVA, and Tukey HSD test (alpha = 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram.
Resumo:
The European Union’s (EU) area of Freedom, Security and Justice (AFSJ) portfolio comprises policy areas such as immigration and asylum, and police and judicial cooperation. Steps were taken to bring this field into the mandate of the EU first by the Maastricht Treaty, followed by changes implemented by the Amsterdam and Lisbon Treaties, the last one ‘normalizing’ the EU’s erstwhile Third Pillar. As the emergent EU regime continues to consolidate in this field, NGOs of various kinds continue to seek to influence policy-making and implementation, with varying success. This article seeks to establish the context in which NGOs carry out their work and argues that the EU-NGO interface is impacted both by the institutional realities of the European Union and the capacities of EU-oriented NGOs to seize and expand opportunities for access and input into the policy cycle. Using EU instruments representing three different policy bundles in AFSJ (immigration, asylum and judicial cooperation in criminal matters), the article seeks to map out NGO strategies in engaging and oftentimes resisting European Union policy instruments.
Resumo:
One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.
Resumo:
Murray's law describes the optimal branching anatomy of vascular bifurcations. If Murray's law is obeyed, shear stress is constant over the bifurcation. Associations between Murray's law and intravascular ultrasound (IVUS) assessed plaque composition near coronary bifurcations have not been investigated previously.
Resumo:
Traditionally, the routine artificial digestion test is applied to assess the presence of Trichinella larvae in pigs. However, this diagnostic method has a low sensitivity compared to serological tests. The results from artificial digestion tests in Switzerland were evaluated over a time period of 15 years to determine by when freedom from infection based on these data could be confirmed. Freedom was defined as a 95% probability that the prevalence of infection was below 0.0001%. Freedom was demonstrated after 12 years at the latest. A new risk-based surveillance approach was then developed based on serology. Risk-based surveillance was also assessed over 15 years, starting in 2010. It was shown that by using this design, the sample size could be reduced by at least a factor of 4 when compared with the traditional testing regimen, without lowering the level of confidence in the Trichinella-free status of the pig population.
Resumo:
As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.