993 resultados para Decoding algorithm
Resumo:
We develop a simulation based algorithm for finite horizon Markov decision processes with finite state and finite action space. Illustrative numerical experiments with the proposed algorithm are shown for problems in flow control of communication networks and capacity switching in semiconductor fabrication.
Resumo:
We develop a simulation-based, two-timescale actor-critic algorithm for infinite horizon Markov decision processes with finite state and action spaces, with a discounted reward criterion. The algorithm is of the gradient ascent type and performs a search in the space of stationary randomized policies. The algorithm uses certain simultaneous deterministic perturbation stochastic approximation (SDPSA) gradient estimates for enhanced performance. We show an application of our algorithm on a problem of mortgage refinancing. Our algorithm obtains the optimal refinancing strategies in a computationally efficient manner
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
This paper presents a novel approach for designing a fixed gain robust power system stabilizer (PSS) with particu lar emphasis on achieving a minimum closed loop perfor mance, over a wide range of operating and system condi tion. The minimum performance requirements of the con troller has been decided apriori and obtained by using a genetic algorithm (GA) based power system stabilizer. The proposed PSS is robust to changes in the plant parameters brought about due to changes in system and operating con dition, guaranteeing a minimum performance. The efficacy of the proposed method has been tested on a multimachine system. The proposed method of tuning the PSS is an at tractive alternative to conventional fixed gain stabilizer de sign, as it retains the simplicity of the conventional PSS and still guarantees a robust acceptable performance over a wider range of operating and system condition.
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Resumo:
Low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, were given by Guo and Xia along with sufficient conditions for a Space-Time Block Code (STBC) to achieve full diversity with PIC/PIC-SIC decoding for point-to-point MIMO channels. In Part-I of this two part series of papers, we give new conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. We then show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks and give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders. In Part-II, we construct new low complexity full-diversity PIC/PIC-SIC decodable STBCs and DSTBCs that achieve higher rates than the known full-diversity low complexity ML decodable STBCs and DSTBCs.
Resumo:
In this second part of a two part series of papers, we construct a new class of Space-Time Block Codes (STBCs) for point-to-point MIMO channel and Distributed STBCs (DSTBCs) for the amplify-and-forward relay channel that give full-diversity with Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC) decoders. The proposed class of STBCs include most of the known full-diversity low complexity PIC/PIC-SIC decodable STBCs as special cases. We also show that a number of known full-diversity PIC/PIC-SIC decodable STBCs that were constructed for the point-topoint MIMO channel can be used as full-diversity PIC/PIC-SIC decodable DSTBCs in relay networks. For the same decoding complexity, the proposed STBCs and DSTBCs achieve higher rates than the known low decoding complexity codes. Simulation results show that the new codes have a better bit error rate performance than the low ML decoding complexity codes available in the literature.
Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics
Resumo:
In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the image reconstruction using the fan-beam filtered backprojection (FBP) algorithm with no backprojection weight from windowed linear prediction (WLP) completed truncated projection data. The image reconstruction from truncated projections aims to reconstruct the object accurately from the available limited projection data. Due to the incomplete projection data, the reconstructed image contains truncation artifacts which extends into the region of interest (ROI) making the reconstructed image unsuitable for further use. Data completion techniques have been shown to be effective in such situations. We use windowed linear prediction technique for projection completion and then use the fan-beam FBP algorithm with no backprojection weight for the 2-D image reconstruction. We evaluate the quality of the reconstructed image using fan-beam FBP algorithm with no backprojection weight after WLP completion.
Resumo:
In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.
Resumo:
Simple algorithms have been developed to generate pairs of minterms forming a given 2-sum and thereby to test 2-asummability of switching functions. The 2-asummability testing procedure can be easily implemented on the computer. Since 2-asummability is a necessary and sufficient condition for a switching function of upto eight variables to be linearly separable (LS), it can be used for testing LS switching functions of upto eight variables.
Resumo:
We consider the problem of computing a minimum cycle basis in a directed graph G. The input to this problem is a directed graph whose arcs have positive weights. In this problem a {- 1, 0, 1} incidence vector is associated with each cycle and the vector space over Q generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of weights of the cycles is minimum is called a minimum cycle basis of G. The current fastest algorithm for computing a minimum cycle basis in a directed graph with m arcs and n vertices runs in O(m(w+1)n) time (where w < 2.376 is the exponent of matrix multiplication). If one allows randomization, then an (O) over tilde (m(3)n) algorithm is known for this problem. In this paper we present a simple (O) over tilde (m(2)n) randomized algorithm for this problem. The problem of computing a minimum cycle basis in an undirected graph has been well-studied. In this problem a {0, 1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of the graph. The fastest known algorithm for computing a minimum cycle basis in an undirected graph runs in O(m(2)n + mn(2) logn) time and our randomized algorithm for directed graphs almost matches this running time.
Resumo:
Genetic Algorithms (GAs) are recognized as an alternative class of computational model, which mimic natural evolution to solve problems in a wide domain including machine learning, music generation, genetic synthesis etc. In the present study Genetic Algorithm has been employed to obtain damage assessment of composite structural elements. It is considered that a state of damage can be modeled as reduction in stiffness. The task is to determine the magnitude and location of damage. In a composite plate that is discretized into a set of finite elements, if a jth element is damaged, the GA based technique will predict the reduction in Ex and Ey and the location j. The fact that the natural frequency decreases with decrease in stiffness is made use of in the method. The natural frequency of any two modes of the damaged plates for the assumed damage parameters is facilitated by the use of Eigen sensitivity analysis. The Eigen value sensitivities are the derivatives of the Eigen values with respect to certain design parameters. If ωiu is the natural frequency of the ith mode of the undamaged plate and ωid is that of the damaged plate, with δωi as the difference between the two, while δωk is a similar difference in the kth mode, R is defined as the ratio of the two. For a random selection of Ex,Ey and j, a ratio Ri is obtained. A proper combination of Ex,Ey and j which makes Ri−R=0 is obtained by Genetic Algorithm.