859 resultados para Data-driven energy e ciency
Resumo:
This paper describes the socio-economic and environmental impacts of battery driven Auto Rickshaw at Rajshahi city in Bangladesh. Unemployment problem is one of the major problems in Bangladesh. The number of unemployed people in Bangladesh is 7 lacks. Auto Rickshaw reduces this unemployment problem near about 2%.In this thesis work various questions were asked to the Auto Rickshaw driver in the different point in the Rajshahi city. Then those data were calculated to know their socio economic condition. The average number of passenger per Auto Rickshaw was determined at various places of Rajshahi city (Talaimari mor, Hadir mor, Alupotti, Shaheb bazar zero point, Shodor Hospital mor, Fire brigade mor, CNB mor, Lakshipur mor, Bondo gate, Bornali, Panir tank, Rail gate, Rail Station, Bhodrar mor, Adorsha School mor). Air pollution is a great threat for human health. One of the major causes of the air pollution is the emission from various vehicles, which are running by the burning of the fossil fuel in different internal combustion(IC) engines. All the data’s about emission from various power plants were collected from internet. Then the amounts of emission (CO2, NOX and PM) from different power plant were calculated in terms of kg/km. The energy required by the Auto Rickshaw per km was also calculated. Then the histogram of emission from different vehicles in terms of kg/km was drawn. By analyzing the data and chart, it was found that, battery driven Auto Rickshaw increases income, social status, comfort and decreases unemployment problems.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.
Resumo:
Road surface skid resistance has been shown to have a strong relationship to road crash risk, however, applying the current method of using investigatory levels to identify crash prone roads is problematic as they may fail in identifying risky roads outside of the norm. The proposed method analyses a complex and formerly impenetrable volume of data from roads and crashes using data mining. This method rapidly identifies roads with elevated crash-rate, potentially due to skid resistance deficit, for investigation. A hypothetical skid resistance/crash risk curve is developed for each road segment, driven by the model deployed in a novel regression tree extrapolation method. The method potentially solves the problem of missing skid resistance values which occurs during network-wide crash analysis, and allows risk assessment of the major proportion of roads without skid resistance values.
Resumo:
The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the form of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This master‟s thesis project presents a study that seeks to inform design guidelines for differently motivated energy consumers. The focus of the research is on comparative feedback supported by a community of energy consumers. In particular, the discussed comparative feedback types are explanatory comparison, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three support exploring the potential of socialising energy-related feedback in social networking sites, such as Facebook. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was developed through a theory-driven approach and evaluated in personal, semi-structured interviews which provided insights on how motivation-related comparative feedback should be designed. It was also employed in expert focus group discussions which resulted in defining opportunities and challenges before mobile, social energy monitors. The findings have unequivocally shown that users with different motivations to compare and to conserve energy have different preferences for comparative feedback types and design. It was established that one of the most influential factors determining design factors is the people users compare to. In addition, the research found that even simple communication strategies in Facebook, such as wall posts and groups can contribute to engagement with energy conservation practices. The concept of mobility of the application was evaluated as positive since it provides place and time-independent access to the energy consumption data.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.
Resumo:
The standard free energies of formation of CaO derived from a variety of high-temperature equilibrium measurements made by seven groups of experimentalists are significantly different from those given in the standard compilations of thermodynamic data. Indirect support for the validity of the compiled data comes from new solid-state electrochemical measurements using single-crystal CaF2 and SrF2 as electrolytes. The change in free energy for the following reactions are obtained: CaO + MgF2 --> MgO + CaF2 Delta G degrees = -68,050 -2.47 T(+/-100) J mol(-1) SrO + CaF2 --> SrF2 + CaO Delta G degrees = -35,010 + 6.39 T (+/-80) J mol(-1) The standard free energy changes associated with cell reactions agree with data in standard compilations within +/- 4 kJ mol(-1). The results of this study do not support recent suggestions for a major revision in thermodynamic data for CaO.
Resumo:
A graphical method is presented for Hall data analysis, including the temperature variation of activation energy due to screening. This method removes the discrepancies noted in the analysis of recently reported Hall data on Si(In).
Resumo:
This paper considers the problem of power management and throughput maximization for energy neutral operation when using Energy Harvesting Sensors (EHS) to send data over wireless links. It is assumed that the EHS are designed to transmit data at a constant rate (using a fixed modulation and coding scheme) but are power-controlled. A framework under which the system designer can optimize the performance of EHS when the channel is Rayleigh fading is developed. For example, the highest average data rate that can be supported over a Rayleigh fading channel given the energy harvesting capability, the battery power storage efficiency and the maximum allowed transmit energy per slot is derived. Furthermore, the optimum transmission scheme that guarantees a particular data throughput is derived. The usefulness of the framework developed is illustrated through simulation results for specific examples.
Resumo:
A Wireless Sensor Network (WSN) powered using harvested energies is limited in its operation by instantaneous power. Since energy availability can be different across nodes in the network, network setup and collaboration is a non trivial task. At the same time, in the event of excess energy, exciting node collaboration possibilities exist; often not feasible with battery driven sensor networks. Operations such as sensing, computation, storage and communication are required to achieve the common goal for any sensor network. In this paper, we design and implement a smart application that uses a Decision Engine, and morphs itself into an energy matched application. The results are based on measurements using IRIS motes running on solar energy. We have done away with batteries; instead used low leakage super capacitors to store harvested energy. The Decision Engine utilizes two pieces of data to provide its recommendations. Firstly, a history based energy prediction model assists the engine with information about in-coming energy. The second input is the energy cost database for operations. The energy driven Decision Engine calculates the energy budgets and recommends the best possible set of operations. Under excess energy condition, the Decision Engine, promiscuously sniffs the neighborhood looking for all possible data from neighbors. This data includes neighbor's energy level and sensor data. Equipped with this data, nodes establish detailed data correlation and thus enhance collaboration such as filling up data gaps on behalf of nodes hibernating under low energy conditions. The results are encouraging. Node and network life time of the sensor nodes running the smart application is found to be significantly higher compared to the base application.
Resumo:
In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.
Resumo:
The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.